USN	
-----	--

INTERNAL ASSESSMENT TEST II

Sub:	DIGITAL COMMUNICATION							Code:	18/17/15EC61
Date:	22/06/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE/TCE

Answer five full questions. Question #1 is compulsory.

	Questions	Marks	СО	RBT
1(a)	Sketch the waveforms for the binary sequence "10101010" using the following line coding schemes. i) NRZ Bipolar ii) RZ Polar iii) NRZ Unipolar ii) Manchester	[04]	CO1	L2
1(b)	Sketch the waveforms for the binary sequence "100000001" using the following line coding schemes. i) HDB3 ii) B3ZS iii) B6ZS	[06]	CO1	L2
2	Explain binary pulse amplitude modulation (PAM) system with a neat block diagram. Derive Nyquist criterion for zero ISI.	[10]	CO3	L2,L3
3(a)	Derive ideal solution to ISI. What are the practical limitations of the ideal solution?	[05]	CO3	L3
3(b)	With necessary equations, explain the practical solution to ISI. Plot the raised cosine spectrum for roll-off factor equal to 0.75.	[05]	CO3	L2
4	With a neat block diagram and necessary equations, explain modified duobinary coder. Derive the impulse response of modified duobinary coder and plot the same.	[10]	CO3	L2,L3
5(a)	Binary sequence " 1100101011 " is applied to a duobinary coder. Obtain the output of duobinary coder. Obtain the receiver output assuming that amplitude due to second bit reduces to 0 .	[05]	CO3	L3
5(b)	Binary sequence "1100101011" is applied to a duobinary coder with precoder. Obtain the precoded output, transmitted amplitudes and receiver output.	[05]	CO3	L3
6(a)	Binary sequence "1100101011" is applied to a modified duobinary coder. Obtain the output of modified duobinary coder. Obtain the decoded bits assuming that amplitude due to third bit becomes 0 .		CO3	L3
6(b)	Binary sequence "1100101011" is applied to a modified duobinary coder with precoder. Obtain the output of precoder and transmitted amplitudes and decoded bits.	[05]	CO3	L3

Scheme Of Evaluation Internal Assessment Test II – June 2021

Sub:	DIGITAL COMMUNICATION							Code:	18EC61
Date:	22/06/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Note: Answer 5 Questions

Question		Description	Marks		Max
#			Distri	ibution	Marks
1	a	Sketch the waveforms for the binary sequence "10101010" using the following		4	10
		line coding schemes.			
		i) NRZ Bipolar ii) RZ Polar iii) NRZ Unipolar ii) Manchester			
		NRZ Bipolar	1		
		RZ Polar	1		
		NRZ Unipolar	1		
		• Manchester	1		
	b	Sketch the waveforms for the binary sequence "100000001" using the		6	
		following line coding schemes.			
		i) HDB3 ii) B3ZS iii) B6ZS			
		• HDB3	2		
		• B3ZS	2		
		• B6ZS	2		
2		Explain binary pulse amplitude modulation (PAM) system with a neat block		10	10
		diagram. Derive Nyquist criterion for zero ISI.			
		Block diagram	2		
		• Explanation	2		
		• Derivation	6		
3	a	Derive ideal solution to ISI. What are the practical limitations of the ideal solution?		5	10
		• Derivation	3		
		Practical Limitation	2		
	b	With necessary equations, explain the practical solution to ISI. Plot the raised cosine		5	10
		spectrum for roll-off factor equal to 0.75.			
		• Equation	3		
		• Plot	2		

4		With a neat block diagram and necessary equations, explain modified duobinary		10	10
		coder. Derive the impulse response of modified duobinary coder and plot the same.			
		Block diagram	2	1	
		Explanation	2		
		Derivation	6		
5	a	Binary sequence "1100101011" is applied to a duobinary coder. Obtain the output		5	10
		of duobinary coder. Obtain the receiver output assuming that amplitude due to			
		second bit reduces to 0 .			
		Transmitter Output	3		
		Receiver Output	2		
	b	Binary sequence "1100101011" is applied to a duobinary coder with precoder.		5	
		Obtain the precoded output, transmitted amplitudes and receiver output.			
		Transmitter Output	3		
		Receiver Output	2		
6	a	Binary sequence "1100101011" is applied to a modified duobinary coder. Obtain		5	10
		the output of modified duobinary coder. Obtain the decoded bits assuming that			
		amplitude due to third bit becomes 0 .			
		Transmitter Output	3		
		Receiver Output	2		
	b	Binary sequence "1100101011" is applied to a modified duobinary coder with		5	
		precoder. Obtain the output of precoder and transmitted amplitudes and decoded			
		bits.			
		Transmitter Output	3		
		Receiver Output	2		

Practical difficulties in realizing the ideal solution to ISI.

- i. P(f) has aboupt transition at $f = \pm \frac{Rb}{2}$, which cannot be physically realized.
- ii. Instead of sampling the received Signal at $t=iT_b$, $i=0,\pm 1,\pm 2,\cdots$ if we sample at $t = iT_b + \Delta t$, there will be a large amount of ISI. Accordingly, there is practically no margin for error in determining sampling instants at the receiver.

3b)

$$P(f) = \begin{cases} T_{b} & \text{for } |f| < f_{1} \\ \frac{T_{b}}{2} & \text{find } |f| < f_{1} \\ \frac{T_{b}}{2} & \text{find } |f| < f_{1} \\ \frac{T_{b}}{2} & \text{find } |f| < 2B_{o} - f_{1} \\ 0 & \text{for } |f| \ge 2B_{o} - f_{1} \end{cases}$$

Block diagram of modified duobinary coder without precoder.

$$\begin{array}{l} ... \ h(t) = \int\limits_{-\infty}^{\infty} H(f) \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f 2 T_b} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df \\ = \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, e^{j 2 \pi f t} \, df$$

$$= \int\limits_{-\infty}^{\infty} \left[1 - e^{j 2 \pi f t} \right] T_b \, df$$

$$= \frac{T_{b}}{j2\pi t} 2j \sin(\pi R_{b}t) - \frac{T_{b}}{j2\pi(t-2T_{b})} 2j \sin(\pi R_{b}(t-2T_{b}))$$

$$= \frac{\sin(\pi R_{b}t)}{\pi R_{b}t} - \frac{\sin(\pi R_{b}(t-2T_{b}))}{\pi R_{b}(t-2T_{b})}$$

$$= \sin(R_{b}t) - \sin(R_{b}(t-2T_{b})) ...(G)$$

