

INTERNAL ASSESSMENT TEST – II

Sub	DIGITAL SIGNAL PROCESSING							Code	18EC52
Date	29 / 10 / 2020	Duration	90 mins	Max Marks	50	Sem	V	Branch	ECE/TCE

Answer all the questions

		Marks	СО	RBT
1	Find the circular convolution of $x[n] = [3, -4, 2, -1]$ and $h[n] =$	[10]	CO1	L2
	[3, -1, 2, -2] using Stockham's method (DFT-IDFT method). Verify your			
	answer by computing the circular convolution using matrix method.			
2	Compute the output $y[n]$ of an LTI system whose impulse response is	[10]	CO1	L2
	h[n] = [1,2,3] for the input $x[n] = [1,2,-1,0,1,3,-2,1,4,-2,2]$ using			
	overlap-save method. Use 6 point circular convolution.			
3	Compute the output $y[n]$ of an LTI system whose impulse response is	[10]	CO1	L2
	h[n] = [1,2,3,1] for the input $x[n] = [3,2,-1,2,3,-2,1,1,2,-1,0,1]$ using			
	overlap-add method. Use 7 point circular convolution.			
4	Compute the 8-point DFT of $x[n] = \sin(\frac{\pi}{4}n)$, $0 \le n \le 7$ using DIT-FFT.	[10]	CO3	L2
	\T /			
5	Compute the DFT of $x[n] = [2,1,4,3,4,3,2,1]$ using DIF-FFT.	[10]	CO3	L2

Scheme Of Evaluation

<u>Internal Assessment Test II – October 2020</u>

Sub:	DIGITAL SIGNAL PROCESSING							Code:	18EC52
Date:	29/10/ 2020	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE,TCE

Note: Answer All Questions

Question	Description	Marks		Max
#		Distribution		Marks
1	Consider the sequence $x[n]=[2,4,6,8,8,6,4,2]$ with 8-point DFT $X[k]$.		10	10
	1) What is the value of X[0]?			
	2) What is the value of X[4]?			
	3) What is the value of X[1] ?			
	4) What is the value of X[2]?			
	5) What is the value of X[7]?			
	• 40			
	• 0			
	• -11.6569 - j 4.8284			
	• 0			
	• -11.6569 + j 4.8284			
2	Consider the 6-point DFT $X[k]=[12, -3 - j \ 1.7321, \ 0, \ 0, \ 0, \ -3 + j \ 1.7321]$. Let		10	10
	x[n] be the corresponding time domain sequence.			
	6) What is the value of x[0]?			
	7) What is the value of x[3]?			
	8) What is the value of x[1]?			
	9) What is the value of x[2]?			
	10) What is the value of x[4]?			
	• 1			
	• 3			
	• 2			
	• 3			
	• 2			
3	Consider the sequence $x[n]=[1,2,3,4,4,3,2,1]$ with 8-point DFT $X[k]$.		10	10
	11) What is the value of $\sum_{k=0}^{7} X(k)$			
	12) What is the value of $\sum_{k=0}^{7} X(k) ^2$			
	• 8			
	• 480			

4	Compute the 8-point DFT of $x[n] = sin\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIT-FFT.	10	10
	Output of first stage		
	Output of second stage		
	• Output of third stage $X[k] = [0 - 4j \ 0 \ 0 \ 0 \ 0 \ 4j]$		
5	Compute the DFT of $x[n]=[2,1,4,3,4,3,2,1]$ using DIF-FFT.	10	10
	Output of first stage		
	Output of second stage		
	• Output of third stage $X[k] = [20 - 4.8284 - 2j \ 0 \ 0.8284 +$		
	$2j \ 4 \ 0.8284 - 2j \ 0 - 4.8284 + 2j]$		