| A | T | 3 | N | V | ١ | V | V | 4 | |---|---|---|---|----------|---|---|---|---| | | | | | | | | | | Test will have 25 questions. Each question carries 2 marks. | 1. Antenna is defined as: * | 2 points | |---|----------| | A metal which can radiate or receive electromagnetic waves A means of radiating and receiving electromagnetic waves A structure associated with the region of transition from guided wave propagation and free sp propagation and vice versa All the above | oace | | 2. For an antenna to radiate electromagnetic energy, the following conditions must satisfy * | 2 points | | Charges must be accelerated | | | current must be time varying | | | Both the above conditions | | | None of the above | | | 3. To facilitate antenna radiation, antenna structure is: * | 2 points | | Bent | | | Curved | | | Terminated with a load | | | All the above | | | 4. An isotropic antenna * | 2 points | |--|----------| | yields maximum gain spherical shaped antenna which is used in antenna analysis hypothetical antenna which radiates energy equally in all directions has many antenna elements | | | 5. Radiation intensity is * | 2 points | | power radiated by the antenna per unit area power radiated by the antenna per unit solid angle maximum power radiated by the antenna total power radiated by the antenna | | | 6. Poynting vector is * | 2 points | | Power radiated per unit area | | | Power radiated per unit solid angle | | | maximum power radiated by the antenna | | | total power radiated by the antenna | | | 7. Graphical representation of the radiation properties of an antenna as a function of space angles is called * | 2 points | |--|----------| | Half power beam width | | | Beam solid anlge | | | Radiation pattern | | | O Beam area | | | 8. Half power beam width (HPBW) is * | 2 points | | Angular beam width at the first nulls | | | Angular beam width at the half power level | | | Angular beam width at the maximum radiation levels | | | None of the above | | | 9. An antenna has a field pattern given by E(θ)= 〖cos〗 ^2 θ for 0°≤θ≤90°. Half power beam width (HPBW) of the antenna is * | 2 points | | O 33° | | | | | | O 99° | | | O 122° | | | Gain is a theoretical quantity Directivity is more a realized number Gain and directivity are related by D=kG, k is antenna efficiecy Gain is more a realized number | | |---|----| | 11. Gain of an antenna is dependent on * | is | | Conduction losses in antenna structure impedance matching between antenna input and transmission lines dielectric losses in antenna structure | | | All the above 12. Following equation depicts the power received by the receiving antenna * 2 point | is | | Friis equation Rayleigh criterion Lorentz equation None of the above | | | 13. Point sources are studied because * | 2 points | |--|----------| | they give all details of the radiation pattern they offer greater conceptual simplicity and mathematical convenience for analytical study of antennas they are having greater aperture efficiency None of the above | | | 14. To completely characterize the radiation pattern of point source antenna, following components are needed: * | 2 points | | S_r, E_θ and E_Φ | | | \bigcirc S_ θ , E_ θ and E_ Φ | | | \bigcirc S_Φ, E_θ and E_Φ | | | None | | | | | | 15. Which of the following is true for antenna arrays * | 2 points | | used to increase the gain of the antennas | | | face problems of mutual coupling | | | gain increases with increase of number of antennas | | | all the above | | | | | | 16. A linear array of isotropic point sources with sources in phase is * | 2 points | |--|----------| | A broadside array An end fire array Scanning array Hansen-Woodyard array | | | 17. Null in a radiation pattern refers to * | 2 points | | No power radiated in that direction No field radiated in that direction both of the above None of the above | | | 18. It is possible to adjust the radiation lobes in any desired direction in case of * | 2 points | | Broadside array End-fire array Hansen-Woodyard array Scanning array | | | 19. The problem observed with end fire array was * | 2 points | |---|----------| | Less directivity Less antenna efficiency More side lobes None of the above | | | 20. Following are the highly desired features of antenna: * | 2 points | | Less side lobe level, sharp beam, more directivity Less side lobe level, large beam, more directivity More side lobe level, sharp beam, less directivity None of the above | | | 21. Antenna efficiency depends on * | 2 points | | Conduction and dielectric losses Polarization matching between transmit and receive sides impedance matching between antenna and feed all the above | | | 22. The path traced by the electric field vector associated with the radiation by an antenna is called * | 2 points | |--|----------| | Aperture | | | Polarization | | | Bandwidth | | | None of the above | | | 23. Eight point sources are spaced \mathcal{N}_6 apart. They have a phase difference of $\pi/_3$ between adjacent elements. BWFN in degrees is * | 2 points | | 104.47 | | | 208.95 | | | O 120 | | | O 240 | | | 24. A linear array consists of 4 isotropic point sources. The distance between the adjacent elements is \mathcal{N}_2 . The power is applied with equal magnitudes and a phase difference -d_r. HPBW in degrees is * | 2 points | | 60 | | | O 120 | | | O 150 | | | O 180 | | 3/9/2021 IAT3_MWA | 25. Which of the following statements is false: * | 2 points | |---|----------| | Sharper beam indicates increased directivity | | | spacing between antenna elements of an antenna array is equal | | | Gain is directly proportional to directivity | | | Effective area of an antenna is different from physical area of the antenna | | | | | This form was created inside of CMR Institute of Technology. Google Forms