IAT_2 - Dynamics of Machines
Instructions
Numerical on Static Force - 14 Marks Numerical on determining resultant motion - 6 Marks. Numerical on Balancing of rotating masses - 20 marks Upload solved numerical.
Balancing of single rotating mass by balancing masses in same plane and in different planes cannot take place. *
○ True
False
Which of the following is true for centrifugal force causing unbalance? *
Direction changes with rotation
Magnitude changes with rotation
Oirection and magnitude both change with rotation
O Direction and magnitude both remain unchanged with rotation

What is not the	e effect of unbalanced forces? *
O Load on bea	arings
O Dangerous v	vibrations
Stresses in	various members
Violation of	conservation of mass principle
	ncing is satisfactory for low speed rotors but with increasing speeds, dynamic balancing ssary. This is because, the *
unbalanced	couples are caused only at higher speeds
unbalanced	forces are not dangerous at higher speeds
effects of u	nbalances are proportional to the square of the speed
effects of un	nbalances are directly proportional to the speed
	ing mass be 100 kg and the radius of rotation be 20 cm and the rotation speed be 50 rad/s, the centrifugal force in kN. *
<u> </u>	
o 50	
25000	
50000	

The time interval after which the motion is repeated itself is known as *
time period
○ cycle
frequency
isolation
In a spring-mass system, which of the following force is not considered? *
Spring force
Damping force
Accelerating force
A and B
If the unbalanced system is not set right then. *
Static forces develop
O Dynamic forces develop
Tangential forces develop
Radial forces develop

A body is subjected to two harmonic motions. Determine the resultant motion. *

$$x_1 = 15\sin(\omega t + \frac{\pi}{6}); \ x_2 = 8\cos(\omega t + \frac{\pi}{6}).$$

- $X = 17 \sin (wt + 58^{\circ})$
- $x = 20 \sin (wt + 58^{\circ})$
- $x = 17 \sin (wt + 70^\circ)$
- $x = 20 \sin (wt + 70^\circ)$

A harmonic motion has an amplitude of 20 m and a period of 15.5 sec. Determine the maximum velocity *

- 0.60
- 0.84
- 0.95
- 0.54

Determine the torque required to keep the given mechanism in equilibrium. *

 $O_2A = 30$ mm, = AB = O_4B , $O_2O_4 = 60$ mm, $AO_2O_4 = 60$ °, BC = 19mm, AD=15mm.

- 11500 N-mm
- 9000 N-mm
- 13500 N-mm
- 14500 N-mm

A shaft carriers four masses A, B, C and D, 200,300, 240 and 360 kg respectively, revolving at radii 90,70, 100 and 120 mm respectively. The distance from the plane A are 270 mm, 420mm and 720 mm respectively. Angles between the crank A & B is 45°, B & C is 75°, C & D is 130°. Balancing masses are placed 120 mm and 100 mm from D & A respectively. the distance between them being 500 mm. Find the balancing masses if they are placed at a radius of 100 mm. *

- Balancing Masses are 404 & 408 Kg
- Balancing Masses are 390 & 408 Kg
- Balancing Masses are 404 & 435 Kg
- Balancing Masses are 390 & 435 Kg

l.

Solutions for numericals

mass = 100 kg 15 9C= 20cm= 0.2m W= 50 stad/s. FC= mwg $= 100 \times 0.0 \times 50^{2}$ FC= 100×0-2×50 = 50,000N . . FC= 50KN Plane. Mass'M) Radius Dist from Force + W Couple+ w2 Rg. (91)(M) -1.8 -0.1 A 18 200 0.09 0 0-1ML 0 ML 0-1 3.57 21 0.17 13 300 0.07 7.68 24 0.32 240 0-1 6.05 HM 0.1MM 0.5 M 0.1

43.2

0-12

6.62

MM

360

b.

26.784

Scanned with CamScanner


```
7) let Rebultant
             le 2Asm(wt+0).
1
      the have.
              oc, = 156im (wt +38)
     262 = 8 cos ( wt + 38)
        スニスノナズ2.
       Asin (witte)= 15sin (wit+38) +8(05 (wit+38)
       Asin (wt+0) = 15 (simut (as 30°+ (as wt 5 in 30)
                        +8 (cosut . cos 30 - Simul + Sim 30)
  A(5 in unt coso + cosunt simo)= 155 in unt cos30 +15 cosunt sim 20
                                     + 8coscut (0530
                                       - Esmut Sin 30.
     Asimuticoso.
                = Simul (15 cos 30 - 85 m 30)
    Alocat sino
                              + Coscut (155m30 +8(0030)
    Sim wt (A. (000)
                   = 8.990 Smut
     (obut (A.Simb)
                                + 14.42 Cosal-.
                  Equating coefficient
      17 (00 0= 8 990
       Asmo = 14-42.
```

Sov and adding hath eg w gpt.

A²(cos²0 + Sin²0) = 288.7565

A= 16.99 ~ 17.

Now

Asin 0 = 14.42 (Duiding both)

Acoo = 8.990

tano = 1.6040
0=58.05

50,
2= 175 in lut +58.05°).