Material Science IAT 2 (AY 2020-21) October 2020

Total points 50/50

MS IAT 2 (Oct 2020)

The respondent's email address (shreyas.p@cmrit.ac.in) was recorded on submission of this form.

✓ Plastic deformation in Metals occur due to *	3/3
Slip	
Twinning	
None of the above	
Both of the above	~
✓ While calculating Engineering Stress you consider *	3/3
Instantaneous C/S Area	
● Initial C/S Area	✓
All of the above	
None of the above	

Triple point is a point on the Unary Phase diagram of water where *	2/2
Water exists in both liquid and gaseous forms.	
Water exists only in liquid form Water exists only in solid form	
Water coexists in solid, liquid and gaseous forms.	✓
✓ Fatigue failure occurs due to *	3/3
Cyclic Loading	✓
O Point Load	
Uni directional Loading	
None of the Above	
✓ How many modes of failure are present? *	2/2
O 1	
O 2	
3	✓
O 4	

~	Dimples are seen on the fractured surface of a *	3/3
0	Ductile material Brittle material None of the above All of the above	✓
	All of the above	
✓	Fracture Toughness is defined as the amount of energy required for *	2/2
•	The already existing crack to grow and cause fracture of the material.	✓
0	The crack to form on the surface of the material.	
0	The crack to form on the subsurface of the material.	
0	None of the above	
/	Ultimate Tensile Strength is given by *	2/2
0	Area under the elastic region of the stress-strain curve	
0	Area under the entire stress-strain curve	
•	None of the above	✓
0	All of the above	

~	Which of the following is not a type of fatigue loading? *	3/3
0	Repeated fatigue loading	
0	Completely reversed fatigue loading	
•	Point fatigue loading	✓
0	Irregular fatigue loading	
✓	Beta phase in the Iron - Iron Carbide diagram does not exist because *	3/3
0	The scientists forgot about the greek alphabet "Beta"	
0	The scientists assumed that the Beta was a different phase than Alfa because the metal would turn non magnetic above 768 degree celcius.	:
•	Earlier the scientists assumed that the Beta was a different phase than Alfa because the metal would turn non magnetic above 768 degree Celsius but later realized that it had the same crystal structure as Alpha ferrite and therefore could not be marked as a separate phase.	✓
0	None of the above.	
/	Toughness is given by *	2/2
0	Area under the elastic region of the stress-strain curve	
•	Area under the entire stress-strain curve	✓
0	None of the above	
0	All of the above	

✓ Stiffness is same as *	2/2
O Young's Modulus	
Modulus of Elastisity	
None of the above	
All of the above	~
✓ Gamma Austenite phase in the Iron - Iron Carbide diagram has which of the following crystal structures? *	3/3
Body Centered Cubic Structure	
Simple Cubic Structure	
Hexagonal Close Packed Structure	
Hexagonal Close Packed Structure Face Centered Cubic Structure	~
	3/3
Face Centered Cubic Structure	n
 Face Centered Cubic Structure ✓ Stress relaxation occurs because * The material absorbs the load to some extent and then it starts applying a reaction load on the tool that is applying the load and therefore the stress experienced by the load of the load of the stress experienced by the load of t	n he
Face Centered Cubic Structure Stress relaxation occurs because * The material absorbs the load to some extent and then it starts applying a reaction load on the tool that is applying the load and therefore the stress experienced by the material is lesser. The material transfers the load applied on it onto a support structure attached to it.	n he

During which stage of creep does the material undergo cree	ep failure? * 2/2
Stage 2	
Stage 3	✓
Stage 1	
Stage 4	
Alpha Ferrite phase in the Iron - Iron Carbide diagram has wh following crystal structures? *	nich of the 3/3
Body Centered Cubic Structure	✓
Simple Cubic Structure	
Hexagonal Close Packed Structure	
Face Centered Cubic Structure	
USN *	
12150	

✓ Which of the following is a type of solid solution? *	2/2
Regular Substitutional solid solution	
O Interstitial solid solution	
Irregular Substitutional solid solution	
All of the above	✓
✓ While calculating True Stress you consider *	2/2
Instantaneous C/S Area	✓
Initial C/S Area	
All of the above	
None of the above	
Nama *	
Name *	
Shreyas	

/	Resilience is given by *	3/3
•	Area under the elastic region of the stress-strain curve	~
0	Area under the entire stress-strain curve	
0	None of the above	
0	All of the above	
/	To determine the offset yield strength, a line is drawn by offsetting the linear elastic region on the graph by *	2/2
0	0.02% strain	
0	0.04% strain	
0	0.1% Strain	
•	0.2% strain	✓

This form was created inside of CMR Institute of Technology.

Google Forms