GBGS SCHEME

17MAT21

Second Semester B.E. Degree Examination, July/August 2021

Engineering Mathematics - II

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Solve
$$(D^3 + 6D^2 + 11D + 6)y = 0$$
 (06 Marks)

b. Solve
$$y'' + 2y' + y = e^x$$
 (07 Marks)

c. Using the method of undetermined coefficients, solve
$$y'' - 5y' + 6y = e^{3x} + x$$
 (07 Marks)

2 a. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = e^{3x}$$
 (06 Marks)

b. Solve
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2$$
 (07 Marks)

c. Solve
$$\frac{d^2y}{dx^2} + y = \tan x$$
, by the method of variation of parameters. (07 Marks)

3 a. Solve
$$x \frac{d^2y}{dx^2} - \frac{2y}{x} = x + \frac{1}{x^2}$$
 (06 Marks)
b. Solve $p - \frac{1}{x} = \frac{x}{x} - \frac{y}{x}$ (07 Marks)

b. Solve
$$p - \frac{1}{p} = \frac{x}{y} - \frac{y}{x}$$
. (07 Marks)

c.
$$(p-1)e^{3x} + p^3e^{2y} = 0$$
 by taking the substitution $U = e^x$, $V = e^y$ by reducing into Clairaut's form. (07 Marks)

4 a. Solve
$$(2x+1)^2y'' - 3(2x+1)y' + 16y = 8(2x+1)^2$$
 (06 Marks)

b. Solve
$$p = \tan\left(x - \frac{p}{1 + p^2}\right)$$
 (07 Marks)

Modify the equation into Clairaut's form and hence solve it $xp^2 - py + kp + a = 0$. (07 Marks)

5 a. Form the PDE by eliminating the arbitrary function f from
$$Z = e^{ax+by} f(ax - by)$$
. (06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial x^2} = a^2 z$$
 under the conditions when $x = 0$ $\frac{\partial z}{\partial x} = a \sin y$, $z = 0$. (07 Marks)

Find the solution of one dimensional wave equation, using the method of separation of variables. (07 Marks)

6 a. Form the PDE by eliminating the arbitrary functions in the form
$$Z = xf_1(x+t) + f_2(x+t)$$

b. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$$
 subject to the conditions $\frac{\partial z}{\partial x} = \log_e x$ when $y = 1$ and $z = 0$ when $x = 1$.

c. Derive one dimensional heat equation in the form
$$\frac{\partial u}{\partial t} = e^2 \frac{\partial^2 u}{\partial x^2}$$
. (07 Marks)

17MAT21

- 7 a. Evaluation $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$. (06 Marks)
 - b. Evaluate $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{\frac{a^{2}-r^{2}}{a}} r dr d\theta dz$ (07 Marks)
 - c. Derive the relation $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ with usual notations. (07 Marks)
- 8 a. Evaluate $\iint xydxdy$ taken over the region bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x}{a} + \frac{y}{b} = 1$. (06 Marks)
 - b. Find by double integration the area enclosed by the curve $r = a(1 + \cos \theta)$ between $\theta = 0$ and $\theta = \pi$. (07 Marks)
 - c. Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} \, d\theta$ by expressing in terms of gamma function. (07 Marks)
- 9 a. Find the Laplace transform of $\frac{\cos at \cos bt}{t} + \cos at$. (06 Marks)
 - b. Find the Laplace transform of the full wave rectifier $f(t) = E \sin \omega t$, $0 < t > \pi/\omega$ having period π/ω . (07 Marks)
 - c. Find the inverse transform of $\log \sqrt{\frac{s^2+1}{s^2+4}}$. (07 Marks)
- 10 a. Express the function $f(t) = \begin{cases} \pi t, & 0 < t \le \pi \\ \sin t, & t > \pi \end{cases}$, in terms of unit step function and hence find its Laplace transforms. (06 Marks)
 - b. Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$, y(0) = 2, y'(0) = 1.

 (07 Marks)
 - c. Using convolution theorem, obtain the inverse Laplace transform of the function $\frac{1}{(s^2+a^2)^2}$.

 (07 Marks)