18MAT21

Second Semester B.E. Degree Examination, July/August 2021 Advanced Calculus and Numerical Methods

Time: 3 hrs.

BANGALORE

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Find the divergence and curl of the vector, $\vec{V} = (xyz)i + (3x^2y)j + (xz^2 y^2z)k$ at the point (2, -1, 1).
 - b. Find the workdone in moving a particle in the force field $F = 3x^2i + (2xz y)i + zk$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2. (07 Marks)
 - c. Evaluate the surface integral $\iint_S \vec{F} \cdot \vec{N} ds$ where $\vec{F} = 4xi 2y^2j + z^2k$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3.
- 2 a. Find Curl (Curl \vec{A}) where $\vec{A} = x^2yi 2xzj + 2yzk$ at the point (1, 0, 2). (06 Marks)
 - b. If $\vec{u} = x^2 i + y^2 j + z^2 k$ and $\vec{v} = yzi + zxj + xyk$, show that $\vec{u} \times \vec{v}$ is solenoidal. (07 Marks)
 - c. Evaluate $\int_C (\sin z dx \cos x dy + \sin y dx)$ by using Stoke's theorem, where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$ and z = 3. (07 Marks)
- 3 a. Solve: $(D^4 1) y = 0$ (06 Marks)
 - b. Solve: $\frac{d^3y}{dx^3} \frac{d^2y}{dx^2} + 4\frac{dy}{dx} 4y = \sinh(2x + 3)$ by Inverse differential operator method. (07 Marks)
 - c. Solve: $x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$ (07 Marks)
- 4 a. Solve: $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 e^x)^2$ (06 Marks)
 - b. Solve: $(D-2)^2y = 8 (e^{2x} + x + x^2)$ by Inverse differential operator method. (07 Marks)
 - c. A particle moves along the x-axis according to the law $\frac{d^2x}{dt^2} + \frac{6dx}{dt} + 25x = 0$. If the particle is started at x = 0 with an initial velocity of 12ft/sec to the left, determine x(t). (07 Marks)
- 5 a. Form the partial differential equation by eliminating the arbitrary constants in $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$, where α is the parameter. (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \text{Sinx Siny for which } \frac{\partial z}{\partial y} = -2 \text{Siny when } x = 0 \text{ and } z = 0 \text{ if y is an odd multiple of } \pi/2.$ (07 Marks)
 - c. Derive one dimensional heat equation.

CMRIT LIERARY (07 Marks) BANGALORE - 560 037

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- 6 a. Form the partial differential equation by eliminating the arbitrary functions from Z = f(x + at) + g(x at). (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that when y = 0, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. (07 Marks)
 - c. Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u$, by the method of separation of variables. (07 Marks)
- 7 a. Find the nature of the series $\sum_{n=1}^{\infty} a^{n^2} x^n$, a < 1 (06 Marks)
 - b. Prove that: $J_{Y_2}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{Sinx}$ (07 Marks)
 - c. If $x^3 + 2x^2 x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$ find the values of a, b, c, d. (07 Marks)
- 8 a. Test for convergence the series,

$$\frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \frac{4^2}{2^4} + \dots$$
 (06 Marks)

- b. Express $x^3 + 2x^2 4x + 5$ in terms of Legendre polynomials. (07 Marks)
- c. Show that i) $P_2(\cos \theta) = \frac{1}{4} (1 + 3\cos 2\theta)$ ii) $P_3(\cos \theta) = \frac{1}{8} (3\cos \theta + 5\cos 3\theta)$. (07 Marks)
- 9 a. From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age of 46. (06 Marks)

- b. Find cube root of 37 correct to 3 decimal places, using Newton-Raphson method. (07 Marks)
- c. Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub-intervals. (07 Marks)
- 10 a. Using Newton's backward Interpolation formula, find the interpolating polynomial function given by the following table:

- b. Find a Real Root of the equation $x^3 2x 5 = 0$ correct to three decimal places using Regula Falsi method. (07 Marks)
- c. Evaluate $\int_{0}^{1} \frac{x dx}{1 + x^2}$ by Weddle's rule taking seven ordinates. (07 Marks)