ANGALORE

First/Second Semester B.E. Degree Examination, July/August 2021

Engineering Physics

Max. Marks: 100

18PHY12/22

Note: 1. Answer any FIVE full questions.

2. Physical constants: $C = 3 \times 10^8 \text{m/s}$; $h = 6.63 \times 10^{-34} \text{ JS}$; $g = 9.8 \text{ m/s}^2$; $\epsilon_0 = 8.856 \times 10^{-12} \text{ F/m}$; $M = 9.11 \times 10^{-31} \text{ kg}$; $\epsilon = 1.6 \times 10^{-19} \text{ C}$; $N_A = 6.02 \times 10^{26} \text{/K}$ mole; $K = 1.38 \times 10^{-23} \text{J/K}$

- a. Define Simple Harmonic motion. Derive the equation of motion for Simple Harmonic motion. Explain how complex notation is used in Simple Harmonic motion. (10 Marks)
 - b. Define Shock waves. Mention its applications. (06 Marks)
 - c. A mass 0.5kg causes an extension 0.03m in a spring and the system is set for oscillations. Find force constant of the spring, angular frequency and period of resulting oscillations.

 (04 Marks)
- 2 a. What are Damped Oscillations? Give the theory of damped oscillations and discuss the case of over damping. (10 Marks)
 - b. Describe Hand Operated Reddy Shock tube with the help of diagram. (06 Marks)
 - c. A free particle is executing Simple Harmonic motion in straight line. The maximum velocity it attains during any oscillation is 62.8m/s. Find the frequency of oscillation if its amplitude is 0.5m.

 (04 Marks)
- 3 a. Define Young's modulus, Rigidity modulus and Poisson's ratio. Derive the relation between them. (10 Marks)
 - b. Describe Strain softening and Strain hardening. (06 Marks)
 - c. Calculate the force required to produce an extension of 1mm in steel wire of length 2m and diameter 1mm. If given $Y = 2 \times 10^{11} \text{ N/m}^2$. (04 Marks)
- 4 a. State Hook's law. Derive an expression for Couple required to produce unit twist in a uniform cylindrical rod fixed at one end and the Couple being applied at the other end.

 (08 Marks)
 - b. What is Torsional Pendulum? Give the expression for period of oscillation and write its applications.

 (06 Marks)
 - c. A solid lead sphere of radius 10.3m is subjected to normal pressure of 10N/m^2 acting all over the surface. Determine the change in its volume. Given Bulk modulus of lead is $4.58 \times 10^{10} \,\text{N/m}^2$. (06 Marks)
- 5 a. State and prove Gauss Divergence theorem. (06 Marks)
 - b. Describe three types of optical fibres with one application for each type. (09 Marks)
 - c. Calculate the curl of \vec{A} . Given $\vec{A} = (1 + yz^2) \hat{a}_x + xy^2 + x^2y \hat{a}_z$. (05 Marks)
- 6 a. Discuss Continuity equation and list the four Maxwell's equations. (10 Marks)
 - b. What is Numerical Aperture? Derive and expression for numerical aperture interms of refractive indices of core and cladding. (06 Marks)
 - c. Find the attenuation in an optical fiber of length 500m. When a light signal of power 100mw. Emerges out of the fiber with a power 90mw. (04 Marks)

18PHY12/22

- 7 a. State Heisenberg's uncertainity principle. Show that electron does not exist inside the nucleus by this principle. (06 Marks)
 - b. Explain the terms Spontaneous emission and stimulated emission. Derive the expression for energy density of radiation under equilibrium condition in terms of Einstein's coefficients.

 (10 Marks)
 - c. An electron is bound in an one dimensional potential well of width 1A°, but infinite height. Find its energy values in ground state and in the first two excited states. (04 Marks)
- 8 a. Using time independent wave equation, find Energy Eigen values and Eigen functions for a particle in one dimensional potential well of infinite height. (09 Marks)
 - b. Describe the Construction and working of CO₂ Laser with energy level diagram. (07 Marks)
 - c. The average output Power of Laser source emitting a laser beam of wavelength 6328A° is 5mw. Find the number of Photons emitted per second by the laser source. (04 Marks)
- 9 a. Define Fermi energy and Fermi factor. Derive an expression for Fermi energy at Zero Kelvin. (09 Marks)
 - b. Obtain the expression for electrical conductivity of Semi Conductor. (07 Marks)
 - c. If a NaC ℓ crystal is subjected to an electric field of 1000V/m and the resulting Polarization is 4.3×10^{-8} C/m². Calculate the dielectric constant of NaC ℓ . (04 Marks)
- 10 a. Discuss any two success of Quantum Free Electron theory.
 - b. State Hall effect. Obtain an expression for Hall Coefficient.
 - c. Derive Calusius Mossotti equation.

CMRIT LIBRAR (06 Marks) BANGALORE - 560 03 708 Marks)

(06 Marks)