USN

Third Semester B.E. Degree Examination, June/July 2017

Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Drive the expression for electric field intensity [EFI] due to infinite line charge. (08 Marks)
 - b. A point charge $Q_1 = 25$ nc is located at $P_1(4, -2, 7)$ and a charge $Q_2 = 60$ nc is at $P_2(-3, 4, 2)$, if $\epsilon = \epsilon_0$, find: i) \overline{E} at $P_3(1, 2, 3)$ and (ii) At which point on the 'y' axis is $E_x = 0$?(06 Marks)
 - c. A cube is defined by 1 < x, y, t < 1.2. If $\overline{D} = 2x^2y \overline{ax} + 3x^2y^2 \overline{ay} c/m^2$.
 - i) Apply Gauss's law to find the total flux leaving the closed surface of the cube.
 - ii) Evaluate $\nabla \cdot \overline{D}$ at the centre of the cube.
 - iii) Estimate the total charge enclosed within the cube.

(06 Marks)

2 a. Find the workdone in moving a charge of +2C from (2, 0, 0)m to (0, 2, 0)m along the straight line path joining the two points. If the electric field is $\overline{E} = 2x \overline{ax} - 4y \overline{ay} V/m$.

(08 Marks)

b. Prove that $\overline{E} = -\nabla V$.

(06 Marks)

- c. A potential field in free space is expressed as $V = \frac{20}{xyz}$ volts.
 - i) Find the total energy shred within the cube 1 < x, y, z < 2.
 - ii) What value of the energy would be obtained by assuming a uniform energy density equal to the value at the centre of the cube? (06 Marks)
- 3 a. Let $\epsilon = \epsilon_0$, and $V = 90 Z^{\frac{4}{3}}$ in the region z = 0.
 - i) Obtain expression for \overline{E} , \overline{D} and ρv as function of \overline{Z} .
 - ii) If the velocity of charge density is given as $V_z = 5 \times 10^{-6} \ Z^{\frac{2}{3}}$ m/s. Find I_z at z = 0 and z = 0.1 m. (06 Marks)
 - b. Derive boundary condition at a boundary between two dielectric medium. (08 Marks)
 - c. Determine whether or not the following potential fields satisfy the Laplace equation:

i)
$$V = x^2 - y^2 + z^2$$

ii)
$$V = r \cos \phi + z$$

(06 Marks)

- 4 a. Find the magnetic field intensity (\overline{H}) due to straight conductor of finite length using Biot-Savart law. (06 Marks)
 - b. Using Biot-Savart law, find the value of \overline{H} at that point p for the current circuit shown in Fig.Q4(b).

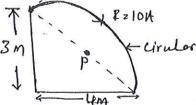


Fig.Q4(b)

(06 Marks)

c. Define and derive expression for scalar magnetic potential and vector magnetic potential.

(08 Marks)

PART - B

- 5 a. Explain force between differential current elements. (06 Marks)
 b. Explain the magnetic boundary conditions. (08 Marks)
 - c. Define self inductance. Derive expression for the inductance of a co-axial cable. (06 Marks)
- a. Derive Maxwell's equation in vector differential form for time varying field starting from Faraday's law. (06 Marks)
 - b. Derive an expression for general wave equation in free space. (08 Marks)
 - c. An uniform plane of 1 MHz is propagating in medium for which $\sigma = 5.8 \times 10^7$ V/m and $\epsilon_r = \mu_r = 1$. Find the following:
 - i) Attenuation constant
 - ii) Phase shaft constant
 - iii) Velocity
 - iv) Wavelength

(06 Marks)

7 a. State and prove Poynting theorem.

(10 Marks)

- b. The region Z < 0 is characterized by $\epsilon_R' = \mu_R = 1$ and $\epsilon_R'' = 0$. The total \overline{E} filed here is given as the sum of the two uniform plane waves: $E_S = 150e^{-J10z}\overline{ax} + (50|\underline{20}|)e^{J10z}ax \text{ V/m}$. Find:
 - i) What is the operating frequency?
 - ii) Specify the intrinsic impendence of the region Z > 0 that would provide the appropriate reflected wave.
 - iii) At what value of Z(-10cm < z < 0) is the total electric field intensity a maximum amplitude? (10 Marks)
- 8 a. Define SWR and derive the expression for SWR in term of reflection coefficient. (10 Marks)
 - b. Explain reflection of uniform plane waves at normal incidence, derive the expressions for transmission and reflection coefficient. (10 Marks)

* * * * *