14MAT11

USN					
UBIT					

First Semester B.E. Degree Examination, June/July 2017 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least ONE question from each part.

Module-1

a. Find the nth derivative of $y = \sin^2 x \sin h^2 x + \log_{10} (x^2 - 3x + 2)$. (07 Marks)

b. Find the pedal equation for the curve $r = a + b \cos \theta$. (06 Marks)

C. Obtain radius of curvature for the parametric curve, $x = a(t - \sin t) y = a(1 - \cos t)$. (07 Marks)

a. If $y = tan^{-1}x$, prove that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Hence obtain $y_n(0)$.

b. Find the angle of intersection between the curves $r=2\sin\theta$; $r=2(\sin\theta+\cos\theta)$. (06 Marks)

c. Find the radius of curvature for the polar curve $r^2 = a^2 \cos 2 \theta$. (07 Marks)

Evaluate: $\operatorname{Lim}(\cos x)^{\cot^2 x}$ (06 Marks)

b. Determine Maclarin's series for the function for $f(x) = \log (1 + \cos x)$ upto term containing (07 Marks)

c. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then obtain the value of $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z}$. (07 Marks)

a. Find total derivative of u with respect to t where $u = tan^{-1}x/y$, $x = e^{t} - e^{-t}$, $y = e^{t} + e^{-t}$.

b. If $u = \frac{x}{v-z}$, $v = \frac{y}{z-x}$, $w = \frac{z}{x-y}$, find the Jacobian $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. Determine whether u,vand w are functionally dependent. (07 Marks)

c. If x y z be the angles of a triangle, show that the maximum value of sin x sin y sin z is $\frac{3\sqrt{3}}{2}$.

a. A particle moves along $x = t^3 - 4t$, $y = t^2 + 4t$, $z = 8t^2 - 3t^3$, where 't' denotes time. Find the magnitudes of velocity and acceleration at time t = 2.

b. Assuming the validity of differentiation under integral prove that

$$\int_{0}^{\infty} e^{-x^2} \cos \alpha x dx = \frac{\sqrt{\pi}}{2} e^{-\alpha^2/4}.$$
 (07 Marks)

c. Trace the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, using general rules of tracing the curve. (06 Marks)

14MAT11

6 a. If
$$\overrightarrow{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$$
 find curl \overrightarrow{F} . Is \overrightarrow{F} irrotational? (07 Marks)

b. Prove that if
$$\overrightarrow{F}$$
 is a vector point function div (curl \overrightarrow{F}) = 0. (07 Marks)

c. If
$$\overrightarrow{r}$$
 is a position vector of a point in space obtain div \overrightarrow{r} and curl \overrightarrow{r} . (06 Marks)

Module-4

7 a. Solve
$$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$$
. (07 Marks)

b. Obtain the reduction formula for
$$\int_{0}^{\pi/2} \cos^{n} x \, dx$$
, where 'n' is a positive integer. (07 Marks)

c. A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of air being 40°C. What will be the temperature of the body after 40 minutes from the original? (06 Marks)

8 a. Show that family
$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$$
 with λ as a parameter is self orthogonal. (07 Marks)

b. Evaluate:
$$\int_{0}^{2a} x^{3} \sqrt{2ax - x^{2}} dx$$
. (07 Marks)

c. Solve:
$$(y^2e^{xy^2} + 4x^3) dx + (2xye^{xy^2} + 3y^2) dy = 0$$
. (06 Marks)

Module-5

Solve by gauss elimination method:

$$2x - 3y + 4z = 7$$

$$5x - 2y + 2z = 7$$

$$6x - 3y + 10z = 23$$
. (07 Marks)

b. Reduce the quadratic form: $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_12x_2 + 2x_1x_3 - 2x_2x_3$ into canonical form by orthogonal transformation. (07 Marks)

c. Find the largest eigen value and corresponding eigen vector by Rayeligh's power method

performing five iterations, with
$$x^{(0)} = [1, 1, 1]^T$$
 for $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. (06 Marks)

Solve by LU decomposition method:

$$10x + y + z = 12$$

$$2x + 10y + z = 13$$

$$2x + 2y + 10z = 14$$
.

(07 Marks)

b. Diagonalze the matrix
$$A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$$
. Hence find A^4 . (07 Marks)

c. Solve by Gauss Seidel iteration method:

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Perform 3 iterations.

(06 Marks)