First Semester B.E. Degree Examination, June/July 2017 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Obtain the nth derivative of $\frac{x}{(x-1)^2(x+2)}$. (06 Marks)
 - b. Find the angle of intersection of the curves $r = a(1+\sin\theta)$ and $r = a(1-\sin\theta)$. (05 Marks)
 - c. Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (05 Marks)

- 2 a. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, then prove that $(x^2 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0$.
 - (06 Marks) b. Obtain the pedal equation of the curve $r^n = a^n \cos n\theta$. (05 Marks)
 - c. Find the derivative of arc length of $x = a (\cos t + \log \tan (\frac{t}{2}))$ and $y = a \sin t$. (05 Marks)

- a. Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log_e (1.1)$, correct to four decimal (06 Marks)
 - b. If $z = \sin(ax + y) + \cos(ax y)$, prove that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$. (05 Marks)
 - c. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z, then find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$ (05 Marks)

- a. If $u(x+y) = x^2 + y^2$, then prove that $\left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right)^2 = 4\left(1 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right)$. (06 Marks)
 - b. Evaluate $\underset{x\to 0}{\text{Lt}} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{1/x}$. (05 Marks)
 - c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, then prove that $x u_x + y u_y + z u_z = 0$. (05 Marks)

- a. A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} - 3\hat{j} + 2\hat{k}$. (06 Marks)
 - b. If $\vec{f} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$, find a, b, c such that \vec{f} is
 - c. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point P(2, -1, 2).

15MAT11

- OR a. Find the directional derivative of $xy^3 + yz^3$ at (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{i} + 2\hat{k}$. (06 Marks)
 - b. If $\vec{u} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ and $\vec{v} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that $\vec{u} \times \vec{v}$ is a solenoidal vector.
 - c. For any scalar field ϕ and any vector field \vec{f} , prove that curl $(\phi \vec{f}) = \phi$ curl $\vec{f} + (\text{grad }\phi) \times \vec{f}$.

Module-4

a. Obtain the reduction formula for $\int \cos^n x \, dx$, where n is a positive integer, hence evaluate

$$\int_{0}^{\pi/2} \cos^{n} x dx . \tag{06 Marks}$$

- b. Solve: $(x^2 + y^2 + x) dx + xydy = 0$. (05 Marks)
- c. Find the orthogonal trajectories of the family of circles r = 2 a cos θ , where 'a' is a parameter.

- a. Evaluate $\int_{0}^{\infty} \frac{x^6}{(1+x^2)^{9/2}} dx$. (06 Marks)
 - b. Solve xy $(1 + x y^2) \frac{dy}{dx} = 1$. (05 Marks)
 - Water at temperature 10°C takes 5 minutes to warm upto 20°C in a room temperature 40°C. Find the temperature after 20 minutes. (05 Marks)

Module-5

- Solve the following system of equations by Gauss Elimination Method. x + 2y + z = 3, 2x + 3y + 2z = 5, 3x - 5y + 5z = 2.
 - Find the dominant eigen value and the corresponding eigen vector by power method

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}, \text{ perform 5 iterations, taking initial eigen vector as } \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{1}. \text{ (05 Marks)}$$

c. Show that the transformation $y_1 = 2x + y + z$, $y_2 = x + y + 2z$, $y_3 = x - 2z$ is regular. Write down the inverse transformation. (05 Marks)

- Solve the following system of equations by Gauss Seidel method. 10 a. (06 Marks)
 - 10x + 2y + z = 9 , x + 10y z = -22 , -2x + 3y + 10z = 22.b. Reduce the matrix A = $\begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ to the diagonal form. (05 Marks)
 - Reduce $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form. (05 Marks)