## Fifth Semester B.E. Degree Examination, June/July 2017 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART - A

- 1 a. Give Formal definition of DFA. And also Design a DFA to read a string made up of letters "computer" and recognize the strings that contains the word "cut" as a substring. (10 Marks)
  - b. Design a DFA to accept strings of a's and b's not ending with abb.

(05 Marks) (05 Marks)

c. Covert the following NFA to DFA

| 0           | 1              |
|-------------|----------------|
| $\{q_{0}\}$ | $\{q_0, q_1\}$ |
| $q_2$       | $q_2$          |
| ф           | ф              |
|             |                |

2 a. Consider the following ∈-NFA

| δ               | €      | a   | b      |
|-----------------|--------|-----|--------|
| $\rightarrow$ P | {r}    | {q} | {p, r} |
| q               | Φ      | {p} | Φ      |
| *r              | {p, q} | {r} | {p}    |

- i) Compute the ∈-closure of each state
- ii) Give the set of all strings of length 3 or less accepted by the automation
- iii) Convert the automation to DFA.

(08 Marks)

- b. Describe regular expression recursively. Write the regular expression for the following:
  - i) Strings of a's and b's that do not end with ab over {a, b}
    - ii) String of 0<sup>s</sup> and 1<sup>s</sup> such that starts and ends with the same symbol. (06 Marks)
- c. Obtain regular expression from the following DFA using state elimination method.(06 Marks)



Fig Q2(c)

3 a. State and prove pumping lemma for regular languages.

(05 Marks)

b. Prove that if L is a regular language so L<sup>R</sup>.

(05 Marks)

c. Minimize the following DFA using table filling Algorithm.

(10 Marks)

| δ               | 0 | 1 |  |  |
|-----------------|---|---|--|--|
| $\rightarrow$ A | В | Е |  |  |
| В               | С | F |  |  |
| *C              | D | Н |  |  |
| D               | Е | Н |  |  |
| Е               | F | I |  |  |
| *F              | G | В |  |  |
| G               | Н | В |  |  |
| Н               | I | C |  |  |
| *I              | A | Е |  |  |
|                 |   |   |  |  |

(05 Marks)

(05 Marks)

|   | d.                   | Explain the application of CFG with respect to parsers.                                                                                                                                                                                                                                                                                                                                | (05 Marks)                             |
|---|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 5 | a.<br>b.             |                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 6 | а.<br>b.<br>c.       | Consider the following grammar $S \to ASA aB$ $A \to B S$ $B \to b E$ i) Eliminate $E$ - production  ii) Eliminate any unit productions in the resulting grammar iii) Eliminate any useless symbols in the resulting grammar iv) Put the resulting grammar in to CNF. Show that $L = \{0^n1^n2^n \mid n \ge 1\}$ is not context free. Prove that CFL are closed under union operation. | (10 Marks)<br>(06 Marks)<br>(04 Marks) |
| 7 | a.<br>b.             | Design a Turing machine to accept the Language $L=\{a^n b^n c^n \mid n\geq 1\}$ . Give the representation for the Turing machine obtained. Define a Turing machine. Show that a multitape Turing machine is equivalent Turing machine.                                                                                                                                                 | (12 Marks)                             |
| 8 | a.<br>b.<br>c.<br>d. | Write short notes on: Recursively Enumerable Language Post correspondence problem Languages of PDA Applications of regular expression.                                                                                                                                                                                                                                                 | (20 Marks)                             |
|   |                      | * * * * *                                                                                                                                                                                                                                                                                                                                                                              |                                        |

4 a. Define context free grammar. Write a CFG for palindromes over {0, 1}\*.
b. What is ambiguous grammar? Show that following grammar is ambiguous for the string

"abababa".  $S \rightarrow Sbs|a$ 

c. What is inherent ambiguity? Explain with an example.

\*\*\*\*