Note: 1. Answer any FIVE full questions.

2. Use of IRC-21-2000 and pigeauds curves are permitted.

3. Assume missing data, if any suitably.

1 a. With a net sketch, explain term afflux.

(06 Marks)

- b. Derive an expression for economic span of bridge and list out the assumptions made economic span. (10 Marks)
- 2 a. Critically review the methods normally used for the estimation of the design discharge of a bridge site. (06 Marks)
  - b. Determine the waterway for a bridge across a stream with a flood discharge 225 m<sup>3</sup>/s, velocity 1.5 m/s and width of flow at high flood level 60 m, if allowable velocity under the bridge is 1.80 m/sec. Take safe velocity is 90% of allowable velocity. (10 Marks)
- Across a stream R.C.C slab culvert of single span 6 m clear length is proposed for NH for two-lane traffic following particulars are available.

Kerbs: 60 mm wide and 30 mm high.

Wearing course: 80 mm thick Loading: IRC class AA (Tracked) Materials: M20 concrete, Fe415 steel.

Design deck slab (check for shear is not necessary)

(16 Marks)

Design a deck slab for the following particulars:

Clear span: 5.5 m

Width of footpath: 1 m on either side

Wearing coat: 100 mm

Loading : IRC class AA (Tracked)

Materials: M35 concrete and Fe415 steel.

Design the slab only for flexture.

(16 Marks)

An R.C.C T-beam bridge is proposed across a stream of bed width 15 m and side slopes 1: 1. Following data are available.

Clear roadway: 7.5 m Effective span: 16 m

Loading: IRC class AA (Tracked)
Materials: M20 concrete, Fe415 steel.

Spacing of three number of longitudinal beams: 2.5 m centre to centre

Spacing of five number of cross beams: 4 m centre to centre

Design:

- (i) An intermediate panel of deck slab using pigeauds theory (shear need not to be checked)
- (ii) An interior longitudinal beam using Kourbons theory.

(16 Marks)

6 Design and detail the cross girder in a T-beam bridge with the following data:

Spacing of longitudinal girders =  $2.5 \text{ m}^{\text{C}}/\text{C}$ ;

Spacing of cross girders =  $4.0 \text{ m}^{\text{C}}/\text{C}$ ;

Thickness of deck slab = 200 mm

Thickness of wearing course = 80 mm

Live load = Class AA (Tracked)

Material =  $M_{30}$  concrete and Fe415 steel.

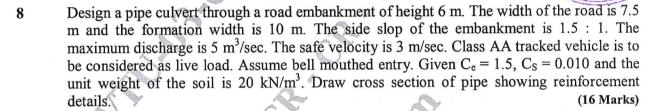
(16 Marks)

(16 Marks)

A box culvert has internal dimensions 3.00 × 3.00 m with the following data:

Super imposed dead load =  $16 \text{ kN/m}^2$ ;

Live load including impact allowance =  $52 \text{ kN/m}^2$ .


Insitu density of soil =  $18 \text{ kN/m}^2$ ;

Angle of internal friction = 30 degrees;

Concrete grade = M30;

Steel grade = Fe415

Considering empty condition, design and detail the box culvert.



9 Verify the adequacy of the dimensions of the pier of a bridge with the following details:

Top width of the pier: 1.6 m

Height of the pier up to springing level: 10 m

C/C of bearing on either side: 1 m

Side batter: 1 in 12

High flood level: 1 m below the bearing level.

Span of the bridge: 16 m

Loading on span: IRC class AA

Road: Two-lane with 1 m wide footpath.

Superstructure: Three longitudinal beams of 1.4 m depth with a deck slab of 200 mm depth.

Rib width: 300 mm

Material: Concrete M<sub>15</sub>.

(16 Marks)

10 a. With a neat sketch, explain rocker and roller bearing.

(08 Marks)

b. What are the requirements of expansion joint in a bridge? Explain them briefly.

(08 Marks)

