GBCS SCHEME

USN

17EE35

(04 Marks)

Third Semester B.E. Degree Examination, July/August 2021

Digital System Design

Note: Answer any FIVE full questions.

Max. Marks: 100

- 1 a. Define and explain combinational logic with neat figure.
 - b. y = f(A, B, C) = A + BC. List all Min terms and Max terms. (06 Marks)
 - c. Simplify $Q = f(A, B, C, D, E) = m_0 + m_1 + m_2 + m_{27} + d_{20}$. Using K-Map and write logic diagram for reduced Boolean equation. (10 Marks)
- 2 a. Write truth table K-Map and logic diagram for half subtractor. (04 Marks)
 - b. Simplify $Q=f(v, w, x, y, z) = M_4 M_{12} M_{15} M_{17}$. Using Quine Mc Clusky method. (10 Marks)
 - c. Two motor M_2 and M_1 are controlled by three sensors S_1 , S_2 and S_3 . M_2 is to run any time all three sensors are on (true). The other motor is to run whenever sensors S_2 or S_1 but not both are on and S_3 is off. For all sensor combinations where M_1 is on M_2 is to be off except when all three sensors are off and then both motors must be off. Write Boolean output equations.

 (06 Marks)
- 3 a. Define explain decoder. (05 Marks)
 - b. Implement full subtractor using 74138 and NAND gate only. (08 Marks)
 - c. Define and explain digital MUX. (07 Marks)
- 4 a. Realize Boolean equation $T = f(w, x, y, z) = \Sigma m(1, 2, 5, 7, 12, 14)$, Using 8 to 1 MUX.

(08 Marks)

- b. List the steps of general approach to combinational logic design. (06 Marks)
- c. Write a note on cascading type 1 bit comparator with truth table and diagram. (06 Marks)
- 5 a. Write a note on SR latch using NAND gate. (05 Marks)
 - b. Write characteristics table, excitation table characteristics equation of JK flip-flop. (07 Marks)
 - c. Compare Moore model and Mealay model to representing sequential machines. (08 Marks)
- 6 a. Implement Divide by 8 Binary ripple counter using JK flip-flop 7476. Write timing diagram and logic diagram. (07 Marks)
 - b. Design synchronous self starting Mod-6 upcounter using T flip-flop. (09 Marks)
 - c. Explain shift right and shift left operations with figure for registers block. (04 Marks)
- 7 a. Write transition table for given state diagram (Ref. Fig Q7(a)).

Fig Q7(a) 1 of 2

(08 Marks)

b. List the steps of synchronous sequential circuit analysis.

(12 Marks)

8 a. Write transition excitation table state table, state diagram and timing diagram for the sequential machine given in Fig Q8(a).

Write a note one decade up counter.

(12 Marks)

(08 Marks)

- 9 a. Write a note on Data types used in VHDL with examples and specifications. (08 Marks)
 - b. What are the fundamental sections that comprise a VHDL code? Explain with any example code. (12 Marks)

CMRIT LIBRARY BANGALORE - 560 037

10 a. Explain how VHDL evolved in early stages of development.

(09 Marks)

b. Write note on Major capabilities of verilog.

(11 Marks)