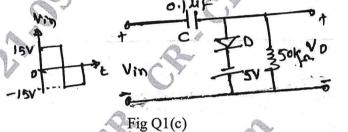


USN

15EE34

Third Semester B.E. Degree Examination, July/August 2021 **Analog Electronics Circuits**

Time: 3. hrs


Max. Marks: 80

Note: Answer any FIVE full questions.

- What is transistor biasing? With neat circuit diagram, explain emitter stabilized bias, write 1 the necessary equations. (06 Marks)
 - Explain the operation of positive clamper circuit. b.

(05 Marks)

Analyze the circuit shown in Fig Q1(c), and draw the output waveforms. Assume $V_k = 0.7V$.

(05 Marks)

- Explain the operation of two way parallel symmetrical clipper circuit, draw its transfer characteristics, input and output waveforms. (06 Marks)
 - b. Explain the transistor switching circuit being used as an inverter.

(05 Marks)

Explain the transistor inverter shown in below Fig Q2(c), determine the values of R_B and R_c. Take $I_c(sat) = 12mA$, $\beta_{dc} = h_{FE} = 200$.

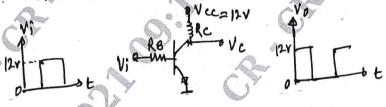


Fig Q2(c)

(05 Marks)

- Define h- parameter. Draw the h-parameter models of CE, CB and CC transistor (06 Marks) configurations.
 - For the emitter follower circuit shown in Fig Q3(b), calculate Z_i, Z₀, A_V and A_I.

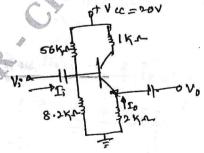


Fig Q3(b)

Take
$$\beta = 200$$
, $h_{ie} = 1.1$ K, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$, $h_{oe} = 24 \mu A/V$.

(10 Marks)

4 a. Describe Miller effect and derive an equation for miller input and output capacitances.

(10 Marks)

- b. An amplifier consists of 3identical stages in cascade the bandwidth of overall amplifier extends from 20Hz to 20KHz. Calculate the bandwidth of individual stage. (06 Marks)
- 5 a. What are the advantages and cascading amplifiers? Obtain the expression of overall voltage gain for 3-stages cascaded amplifier. (06 Marks)
 - b. With block diagram, explain the concept of feedback amplifier.

(06 Marks)

c. Write the advantages of negative feedback in amplifier.

(04 Marks)

- 6 a. With necessary equivalent circuit, derive on expression for Z_i, A_V and A_I for Darlington emitter follower circuit. (10 Marks)
 - b. Mention the types of feedback connections. Draw their block diagram indicating input and output signals. (06 Marks)
- 7 a. Explain the operation of the transformer coupled class A power amplifier, derive its maximum efficiency. (08 Marks)
 - b. What is Brakhansen criterian? Explain how oscillations start in an oscillator. (04 Marks)
 - c. A power amplifier has harmonics distortions $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.01$, the fundamental current I = 4A and $R_L = 8\Omega$. Calculate the i) Total harmonic distortion ii) fundamental power iii) Total power. (04 Marks)
- 8 a. Draw the circuit diagram and explain the operation of a class B push pull amplifier with relevant waveforms, derive its maximum conversion efficiency is 78.5%. (07 Marks)
 - b. With the help of neat circuit diagram, explain the operation of transistor colpitts oscillator.

 Write the expression for the frequency of oscillation. (05 Marks)
 - c. A quartz crystal has the following constants L = 50 mH, $C_1 = 0.02 \text{pF}$, $R = 500 \Omega$ and $C_2 = 12 \text{pF}$, find series and parallel resonant frequency. (04 Marks)
- 9 a. With relevant diagram and V-I characteristics, explain the operation of JFET. (07 Marks)
 - b. Discuss the differences between FET and BJT. (05 Marks)
 - c. Calculate the trans-conductance g_m of a JFET having values of $I_{DSS} = 12mA$ and $V_P = -4V$ at bias points i) $V_{GS} = 0V$ ii) $V_{GS} = -1.5V$. (04 Marks)
- 10 a. Explain the operation of common source JFET amplifier using fixed bias configuration.

 Write the equation of Z_i, Z₀ and A_v. (06 Marks)
 - b. Give the comparison between JFET and MOSFET.

ADIT I IDD AD(05 Marks)

c. For the JFET amplifier shown in below Fig Q10(c). Calculate: BANGALORE - 560 037

i) g_m ii) r_d iii) Z_i iv) Z_0 v) A_v .

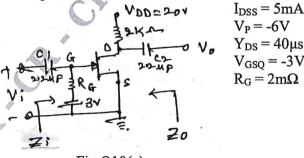


Fig Q10(c)

(05 Marks)