

Fourth Semester B.E. Degree Examination, July/August 2021 Field Theory

Max. Marks:100

Note: Answer any FIVE full questions.

- Define Electric field Intensity (E), find an expression for electric field intensity to 'N' different point charges. (06 Marks)
 - b. State and prove Gauss-Divergence Theorem.

(08 Marks)

- c. A charge of 10nc is located at a point P₁ (0, 0, 5) and another charge of 5nc located at a point $P_2 = (0, 0, -5)$, find the coordinates of the point at which E = 0. (06 Marks)
- With usual notation prove that $E = -\nabla V$.

(06 Marks)

b. Derive Boundary conditions for conductor and Di-electric interface.

(08 Marks)

- At the boundary between glass (E_r = 4) and air the lines of electric field makes an angle of 40° with normal. If electric flux density in air is 0.25 µc.m². Determine the orientation and magnitude of electric flux density on glass. (06 Marks)
- State and prove uniqueness theorem.

(08 Marks)

- Solve the Laplace equation for the pot, field and find the capacitance for a cylinder with radii a and b. Such that b > a, if v = 0, at r = b and $v = v_0$ at r = a. (06 Marks)
- Given the potential field, $V = [A\rho^4 + B\rho^{-4}]\sin 4\phi$. S.T $\nabla^2 V = 0$ and find A and B such that V = 100V and $\vec{E} = 500V/m$ at coordinates. $P[\rho = 1, \phi = 22.5, z = 2]$. (06 Marks)
- State and prove Strokes theorem.

(08 Marks)

Show that curl.H = J in a steady magnetic field.

(08 Marks)

- A H due to a current source is given by $H = y\cos(2x)\hat{a}_x + (y + e^x)\hat{a}_z$. Describe the current density over the y-z plane. (04 Marks)
- State and explain Lorentz force equation.

(08 Marks)

b. Derive an equation of inductance of a solenoid.

(08 Marks)

- A solenoid with air core has 4000 turns and a length of 800mm, core radius is 50mm, find its (04 Marks) inductance.
- Write Maxwell's equation on integral form for time varying fields.

(04 Marks)

- Starting from Faraday's Law of electromagnetic Induction. Derive $\nabla \times \vec{E} = \frac{-\partial \vec{B}}{\partial t}$. (08 Marks)
- A certain material has $\sigma = 0$, $\mu_R = 1$ of E = 800 Sin(10⁶t 0.01z)ay V/m. Make use of (08 Marks) Maxwell equation to find E_R and H(z, t).

7 a. State and prove Poynting's Theorem [P = E×H] (08 Marks)

- b. Starting from Maxwell's equation, Derive the wave equation for a uniform plane wave travelling in free space. (07 Marks)
- c. A plane wave of 16GHz frequency and E = 10V/m propagates through body of salt water having constants $\in_r = 100$, $\mu_r = 1$, $\sigma = 100$ O/N. Determine attenuation constant (α), phase shift constant, phase velocity and intrinsic Impendence of the medium. (05 Marks)

8 a. Define:

- i) Reflection coefficient
- ii) Transmission coefficient
- iii) Loss Tangent

iv) Standing wave and wave ratio

CMRIT LIBRARY

BANGALORE - 560 037

(04 Marks)

b. Derive an expression for Reflection of a Plane wave of a perfect conductor surface.

(08 Marks)

c. A 1MHz uniform plane wave is normally incident on a fresh water lake of $\in_r = 78$, $\mu_r = 1$ Determine the fraction of the incident power ie, Reflected, Transmitted and Determine the amplitude of Electric Field that is transmitted into the lake. (08 Marks)