CBCS SCHEME

17EE45 Fourth Semester B.E. Degree Examination, July/August 2021 **Electromagnetic Field Theory** Max. Marks: 100 3 hrs VGALORE Note: Answer any FIVE full questions. Derive the relationship between rectangular and cylindrical coordinates. (05 Marks) Using surface integral obtain an expression for surface area of a sphere of radius r₁ meter. c. Vector's $A = 5U_x + 4U_y + 3U_z$ and $B = 2U_x + 3U_y + 4U_z$ are situated at a point x, y, z, find: (i) A + B (ii) $A \cdot B$ (iii) angle between A and B (iv) $A \times B$ (v) Unit normal to the plane containing A and B. (10 Marks) State and explain Gauss's law. Given that $\overline{\overline{D}} = \frac{\rho^2 z^2}{3} \cos \phi \, \overline{a_\phi}$. Determine the flux crossing $\phi = \frac{\pi}{4}$ half plane defined by $0 \le \rho \le 3$ and $2 \le z \le 4$. (10 Marks) Derive Gauss Divergence theorem. (10 Marks) Establish relation $E = -\nabla V$. (08 Marks) If V = xy + x - y + zy Volts, find the electric field intensity at a point (1, 2, 3) and energy stored in a cube of scale 2m. (06 Marks) A parallel plate capacitor of 8 nf has an area of 1.51 m² and separation of 10 mm. what separation would be required to obtain the 10 nf capacitance between the plates. (06 Marks) Derive the boundary conditions the interface between a conductor and dielectric interface. (10 Marks) Derive the expression for capacitance of a parallel plate capacitor. (05 Marks) A point charge of 1 μ c is at y = -3 mt and another point charge of 2 μ c is at y = 3 mt, find the electrical potential at a point P(4, 0, 0) mts. (05 Marks) a. Prove uniqueness theorem. (10 Marks) b. Determine whether or not the following potential fields satisfy the Laplace's equations. (i) $v = x^2 - v^2 + z^2$ (ii) $v = r \cos \phi + z$ (iii) $v = r\cos\phi + \phi$ (10 Marks) Derive Ampere's law in difference form. (10 Marks) Given the general vector $\vec{A} = (\sin 2\phi)\hat{a}_{\phi}$ on cylindrical coordinates at $\left(2, \frac{\pi}{4}, \phi\right)$. Find curl of a vector. (05 Marks) State Biot-Savart's law and Ampere's circuital law. (05 Marks) Derive an expression for the force on a differential current element placed in a magnetic 7 field and deduce the result for straight conductor in a uniform magnetic field. (10 Marks) State and explain Lorentz force equation. (05 Marks)

- c. A point charge of Q = -1.2 C has velocity $\overline{V} = 5\hat{a}_x + 2\hat{a}_y 3\hat{a}_z$ m/s. find the magnitude of the force exerted on the charge if
 - (i) $\overline{E} = -18\hat{a}_x + 5\hat{a}_y 10\hat{a}_z \text{ v/m}$
 - (ii) $\overline{B} = -4\hat{a}_x + 4\hat{a}_y + 3\hat{a}_z T$
 - (iii) Both are present simultaneously.

CMRIT LIBRARY

(05 Marks)

8 a. Derive the expression for the inductance of a toroid.

(06 Marks)

- b. An air cored toroid has a cross-sectional area of 6 cm², a mean radius of 15 cm and is wound with 500 turns and carries a current of 4A, find the magnetic field intensity at the mean radius.

 (06 Marks)
- c. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of length 60 cm and diameter 6 cm. Derive the exp. used. (08 Marks)
- 9 a. Derive continuity equation from Maxwell equation.

(10 Marks)

- b. The circular loop conductor having a radius of 0.15 m is placed on x-y plane. This loop consist of a resistance of 20Ω . If the magnetic flux density is $\overline{B} = 0.5 \sin 10^3 t \hat{a}_z T$. (10 Marks)
- 10 a. Starting from Maxwell's equation obtain the general wave equation's on electrical and magnetic fields. (10 Marks)
 - b. Wet Marshy soil is characterized by $\sigma = 10^{-2}$ S/M, $\epsilon_r = 15$ and $\mu_r = 1$. Show that at 60 Hz. It can be considered as good conductor. Hence at 60 Hz. Calculate:
 - (i) Skin depth
 - (ii) Intrinsic impedance
 - (iii) Propagation constant

(10 Marks)