

Fifth Semester B.E. Degree Examination, July/August 2021
Signals and Systems

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Describe the classification of signals.

(06 Marks)

b. A continuous signal X(t) shown in Fig Q1(b). Sketch the odd and even signal of X(t).

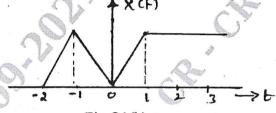


Fig Q1(b)

(06 Marks)

- c. Determine the whether the signals are periodic or non-periodic
 - i) $X(t) = Cos(2\pi t) Sin(4\pi t)$

ii)
$$X((n) = Cos(\frac{\pi n}{2}) + Sin(\frac{\pi n}{4})$$

otherwise

(08 Marks)

- 2 a. Determine the following signals are energy or power signals.
 - i) X(t) = t, 0 < t < 1

$$2-t 1 \le t \le 2$$

$$1 \le t \le 2$$
 ii) $X(n) = \left(\frac{1}{2}\right)^n u(n)$

(06 Marks)

b. Let y(t) and x(t) are given in Fig Q2(b) sketch the following signal.

$$z(t) = X((2t) * y(0.5t + 1)$$

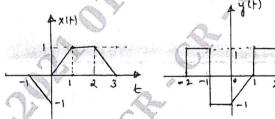


Fig Q2(b)

(06 Marks)

c. Determine whether the following signals are linear, memoryless, causal, stable and time invariance.

i)
$$y(n) = X((n^3))$$

ii)
$$y(t) = \frac{d}{dt} [e^{-t} X(t)].$$

(08 Marks)

3 a. Compute the convolution of the sequences

$$X(n) = \alpha^n u(n)$$
 $y(n) = \beta^n u(n)$

When $\alpha \# \beta$ and $\alpha = \beta$

(06 Marks)

b. Obtain the convolution of the two signals. Also sketch the result. Given

$$h(t) = 1 \qquad \text{for } 1 < t < T$$

$$X(t) = t ; 0 < t < 2T$$

(08 Marks)

0

otherwise

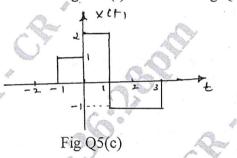
otherwise

c. Determine the natural response of the system described by the following differential equation

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) + 3\frac{dx(t)}{dt} \text{ with initial condition are } y(0) = 0, \frac{dy(t)}{dt}\bigg|_{t=0} = 1$$
(06 Marks)

4 a. A continuous time LTI system is represented by impulse response. Determine whether the system is stable, causal and memory.

i)
$$h(n) = a^n u(n+2)$$
 ii) $h(t) = e^{2t} u(t-1)$. (06 Marks)


b. Draw the direct form I and direct form II implementation of y

$$y(n) + \frac{1}{2}y(n-1) - y(n-3) = x(n) + 3x(n-1) + 2x(n-2)$$
 (06 Marks)

c. Determine the forced response of the system described by difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$$
 with input $x(n) = 2u(n)$. (08 Marks)

- 5 a. What are the properties of continuous time Fourier transform? State and prove Parsavel's theorem. (08 Marks)
 - b. Find the Fourier transform of $x(t) = t e^{-2t}u(t)$. Draw magnitude and phase spectra. (06 Marks)
 - c. Compute the Fourier transform for the signal x(t). Shown in Fig Q5(c).

(06 Marks)

6 a. Using partial fraction expansion, determine the inverse Fourier transform

$$x(jw) = \frac{5jw + 12}{(jw)^2 + 5jw + 6}.$$
 (06 Marks)

- b. Find the Fourier transform of the following signal using appropriate properties $x(t) = \sin(\pi t) e^{-2t} u(t)$. (06 Marks)
- c. Find the frequency response and impulse response of the system describe by the differential

equation
$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = -\frac{dx(t)}{dt}$$
. (08 Marks)

- 7 a. Describe the following properties of DTFT
 - i) Frequency differentiation ii) Linearity iii) Scaling iv) Modulation. (08 Marks)
 - b. Evaluate the DTFT of the signal $x(n) = \left(\frac{1}{2}\right)^n u(n-4)$. (06 Marks)
 - c. Using appropriate properties, find the DTFT of the following signal

$$x(n) = Sin\left(\frac{\pi}{4}n\right)\left(\frac{1}{4}\right)^n u(n-1). \tag{06 Marks}$$

8 a. Find the inverse DTFT of

$$x(e^{jw}) = \frac{6}{e^{-j2\Omega} - 5e^{-j\Omega} + 6}$$
 (06 Marks)

b. Obtain the frequency and impulse response of the system having the output y(n) for the input x(n) as given below.

$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$

$$y(n) = \frac{1}{4} \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{4}\right)^n u(n)$$
(08 Marks)

c. Obtain the difference equation for the system with frequency response.

$$H(e^{jw}) = 1 + \frac{e^{-jw}}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 + \frac{1}{4}e^{-j\Omega}\right)}.$$
 (06 Marks)

9 a. Determine the Z-transform of $x(n) = -u(-n-1) + \left(\frac{1}{2}\right)^n u(n)$. Find the ROC and pole-zero

location of x(z) in the Z-pole. (06 Marks)

- b. What are the properties of Z-transform? Determine the : i) Multiplication by an exponential ii) Translation iii) Multiplication by ramps. (08 Marks)
- c Find the Z-transform of the following
 - i) $x(n) = na^n u(n-3)$
 - ii) x(n) = u(-n) (06 Marks)
- 10 a. Find the discrete-time sequence x(n) which has Z-transform

$$x(z) = \frac{-1 + 5z^{-1}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}. \text{ With ROC i) } |z| > 1 \quad \text{ii) } |z| < \frac{1}{2}.$$
 (06 Marks)

b. A causal system has input x(n) and output y(n). Find the impulse response of the system if

$$x(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2)$$

$$y(n) = \delta(n) - \frac{3}{4}\delta(n-1)$$
(06 Marks)

c. Solve the difference equation

$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1)$$
. The initial conditions are $y(-1) = 1$, $y(-2) = -1$ with the input $x(n) = 3^n u(n)$. (08 Marks)

* * * * *