CBCS SCHEME

USN

15EE71

Seventh Semester B.E. Degree Examination, July/August 2021 Power System Analysis – II

Time: 3 hrs

Max. Marks: 80

Note: Answer any FIVE full questions.

- 1 a. With usual notations, prove that $Y_{bus} = A^{T}YA$ using singular transformation. (06 Marks)
 - b. For the power system shown in Fig.Q1(b), obtain Y_{bus} using singular transformation.

(10 Marks)

- 2 a. What is load flow analysis? Explain the different types of buses considered during power system load flow. Discuss the significance of slack bus in load flow studies. (06 Marks)
 - b. Define primitive network. Give the representation of a typical component and arrive at their performance equations in impedance and admittance forms. (04 Marks)
 - c. One line diagram of a power system is shown in Fig.Q2(c). Using Gauss-Seidel method, determine the complex voltage at Bus-2 at the end of first iteration. Given that $V_1 = 1 | \underline{0} pu$, $P_2 + JQ_2 = -5.96 + J1.46 pu$, $|V_3| = 1.02 pu$, $Z_{12} = 0.04 + J0.06 pu$ and $Z_{23} = 0.02 + J0.03 pu$.

Fig.Q2(c)

(06 Marks)

- 3 a. What are Jacobian elements? Obtain Jacobian elements for basic equations for J_1 and J_3 only. (04 Marks)
 - b. Give the algorithm for Newton-Raphson Load Flow (NRLF). (06 Marks)
 - c. Explain any two methods of control of voltage profile. (06 Marks)
- 4 a. Starting all assumptions, deduce the FDLF model and give the flow-chart. (10 Marks)
 - b. Compare Gauss-Seidal and Newton-Raphson methods of load flow analysis. (06 Marks)

- 5 a. Derive an expression for optimal operation of 'n' units within a plant considering the effect of transmission losses. (06 Marks)
 - b. What are B-coefficients? For the system shown in Fig.Q5(b), obtain loss coefficients and the power loss. Take $I_1 = 1 \ | 0 \ \text{pu}$. $I_2 = 0.8 \ | 0 \ \text{pu}$, $V_3 = 1 \ | 0 \ \text{pu}$. Transmission lines impedances, $Z_a = 0.02 + J0.25 \ \text{pu}$ and $Z_b = 0.03 + J0.35 \ \text{pu}$.

Fig.Q5(b)

(10 Marks)

6 a. The fuel input per hour of plant 1 and plant 2 are given by,

 $F_1 = 0.2P_1^2 + 40P_1 + 120 \text{ RS/Hr}$

 $F_2 = 0.25P_2^2 + 30P_2 + 150 \text{ RS/Hr}$

Determine the economic scheduling neglecting the losses for a load of 180 MW. Also calculate cost of production of 180 MW for the obtained schedule. (04 Marks)

- b. Obtain transmission line loss coefficients in terms of plant generation capacities for two units delivering a load. (06 Marks)
- Obtain economic scheduling for a system having transmission line losses and no limits on generators.
 (06 Marks)
- 7 a. Discuss the problem formulation and solution procedure of optimal scheduling for hydro thermal plant. (10 Marks)
 - b. Draw the flow chart of optimal load flow solution.

(06 Marks)

8 a. Describe the power system security assessment and modeling for contingency analysis.

(08 Marks)

b. Explain power system static security level classification.

CMRIT LIBRARY (08 Marks)

- 9 a. Derive the generalized algorithm for finding the elements of bus impedance matrix Z_{bus} when a branch in added to the partial network. (08 Marks)
 - b. For the three-bus network shown in Fig.Q.9(b) build Z_{bus}.

(08 Marks)

10 a. Explain the numerical solution of swing equation.

(08 Marks)

b. Explain clearly the steps involved in solving power system stability solution of swing equation using Range-Kutta method. (08 Marks)

* * * * *