CBCS SCHEME

USN A COFTEGH

17EE71

Seventh Semester B.E. Degree Examination, July/August 2021

Power System Analysis – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define the following terms with an illustrative example:

BANCAL

- (i) Oriented graph
- (ii) Tree
- (iii) Co-tree

(06 Marks)

b. The Bus Incidence matrix of a power system network is shown below. Construct the oriented graph of the system.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 1 \\ -1 & -1 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

(06 Marks)

c. Derive the expression from Y-bus using singular transformation.

(08 Marks)

2 a. Explain the load flow studies procedure with expressions as per Gauss-Seidel method for power system having all types of buses. (08 Marks)

b. Using Gauss – Seidel load flow method compute at the end of iteration (i) Voltages at buses 2 and 3 (ii) Real and Reaction powers at the slack bus.

$\underline{\mathbf{L}}$	INE DATA	
Bus	$Z_{p, q}$	Y' _{pq}
p - q		
1 - 2	j0.4	j0.2
2 - 3	j0.2	j0.1
3 - 1	j0.4	j0.2

	IN IN	PUT DA	<u>ΓΑ</u>	
Bus (i)	P_{i}	Qi	Vi	Remarks
1	-	2	1.03 <u>0</u> °	Slack
2	-0.4	-0.3	-	PQ
3	-0.5	-0.4	-	PQ

(12 Marks)

3 a. Draw the flow chart of Newton-Raphson method in polar coordinated for load flow analysis.
(12 Marks)

b. Find the values of x_1 and x_2 for the following equations by Newton-Raphson method upto 2^{nd} iteration.

$$x_1^2 - 4x_2 - 4 = 0$$
; $2x_1 - x_2 - 2 = 0$ using $x_1^{(0)} = 1$ and $x_2^{(0)} = -1$.

(08 Marks)

- Deduce the fast decoupled load flow model, clearly stating all the assumptions made and give the flow chart. (10 Marks)
 - b. Explain the concept of controlling voltage profile by the use of (i) Generators (ii) VAR Generators (iii) Transformers. (10 Marks)
- Derive the condition for minimum total fuel cost in a system comprising of K-thermal 5 generating units, considering transmission losses. (08 Marks)
 - Incremental fuel costs in Rs./MWh for a plant consisting of two units are

$$\frac{dC_1}{dP_1} = 0.2P_1 + 40 \; ; \qquad \frac{dC_2}{dP_2} = 0.4P_2 + 30$$

and the generator limits are as follows,

$$30MW \le P_1 \le 175 MW$$

$$20MW \le P_2 \le 125 MW$$

- What is optimal unit commitment and also explain Dynamic Programming method.
 - (08 Marks)

(12 Marks)

Explain Reliability consideration in unit commitment problem.

(06 Marks)

Explain optimal generation scheduling.

- (06 Marks)
- Discuss the problem formation and solution procedure of optimal scheduling for 7 hydrothermal plants. (10 Marks)
 - b. What are transmission line loss coefficients? Derive an expression for transmission loss as a function of plant generation for a two plant system. (10 Marks)
- Explain the major function of security analysis.

(05 Marks)

b. Explain the three major function of system security.

(05 Marks)

- Write a note on:
 - (i) Maintenance Scheduling
- (ii) Power System Reliability

(10 Marks)

9 Explain the algorithm for short circuit studies.

- (10 Marks)
- Derive the generalized algorithm for finding the elements of bus impedance matrix when a LINK is added to the partial network. (10 Marks)
- Explain point-by-point solution of swing equation. 10 a.

(08 Marks)

- b. Explain the steps involved in determining multimachine stability.
- (05 Marks)

Explain modified Euler's method of solving swing equation.

(07 Marks)

