## Third Semester B.E. Degree Examination, June/July 2017 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. With respect to a semiconductor diode, explain the following:
  - (i) Reverse recovery time
  - (ii) Diffusion capacitance.

(06 Marks)

- b. Explain the working of full wave bridge rectifier and derive the expression for ripple factor and efficiency. (08 Marks)
- c. Design an ideal clamper circuit to obtain the output waveform as shown in Fig. Q1 (c) for the given input. (06 Marks)

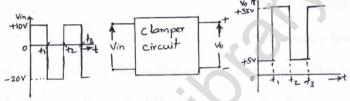
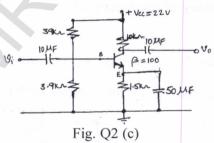




Fig. Q1 (c)

2 a. Explain with help of load line the effect of variation of V<sub>CC</sub>, I<sub>B</sub> on Q-point of a transistor.

(06 Marks)

- b. Derive the expression for stability factors for voltage divider bias circuit with respect to  $I_{CO}$ ,  $V_{BE}$  and  $\beta$ . (06 Marks)
- c. Determine the voltage  $V_{CE}$  and the current  $I_C$  for the voltage divider configuration shown in Fig. Q2 (c) (08 Marks)



- 3 a. Draw the re-equivalent circuit of CE fixed bias configuration and derive the expression for  $Z_{in}$ ,  $Z_O$  and  $A_V$ . (10 Marks)
  - b. What are the advantages of h-parameters?

(04 Marks)

c. For the network shown in Fig. Q3 (c), determine r<sub>e</sub>, Z<sub>i</sub>, Z<sub>o</sub>, A<sub>v</sub>.

(06 Marks)

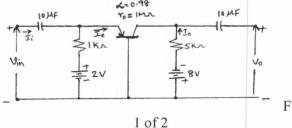



Fig. Q3 (c)

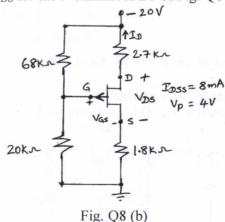
- 4 a. Obtain expression for Miller effect input and Miller effect output capacitance. (06 Marks)
  - b. Draw and discuss the effect of various capacitors on high frequency response. (06 Marks)
  - c. Determine the lower cutoff frequency for the voltage divider bias BJT amplifier with  $C_S=10\,\mu\text{F}\,, C_C=1\,\mu\text{F}\,, C_E=20\,\,\mu\text{F},\,\, R_S=1\,\,K\Omega,\,\, R_1=40\,K\Omega,\,\, R_2=10\,K\Omega,\,\, R_E=2\,\,K\Omega,\\ R_C=4\,\,K\Omega,\,\, R_L=2.2\,\,K\Omega,\,\,\beta=100,\,\, r_0=\infty\,\Omega,\,\, V_{CC}=20V$  (08 Marks)

## PART - B

- 5 a. Explain the important advantages of a negative feedback amplifier. (04 Marks)
  - b. Obtain expression for  $Z_{if}$  and  $Z_{of}$  for voltage series feedback amplifier. (08 Marks)
  - c. Why do we cascade amplifier? State the various method of cascading transistor amplifier. A given amplifier arrangements has the following voltage gains.  $A_{V_1} = 10$ ,  $A_{V_2} = 20$  and  $A_{V_3} = 40$ . What is the overall voltage gain? Also express each gain in dB and determine the total voltage gain in dB? (08 Marks)
- 6 a. With a neat circuit diagram, explain the operation of a transformer coupled class A power amplifier. (06 Marks)
  - b. Prove that the maximum conversion efficiency in class B power amplifier is 78.5%.

(08 Marks)

- c. A power amplifier has harmonic distortions  $D_2 = 0.1$ ,  $D_3 = 0.02$ ,  $D_4 = 0.01$ , the fundamental current  $I_1 = 4$  Amps and  $R_L = 8$   $\Omega$ . Calculate the total harmonic distortion, fundamental power and total power. (06 Marks)
- 7 a. State Barkhausen criteria for sustained oscillations apply this to a transistorized Weinbridge oscillator and explain its operation. (10 Marks)
  - b. Explain the working of BJT Colpitt's oscillator.


(06 Marks)

- c. Calculate the frequency of oscillations of a Colpitt's oscillator,  $L = 100 \mu H$ ,  $C_1 = 100 pF$ ,  $C_2 = 1000 pF$ . (04 Marks)
- 8 a. Derive expression for V<sub>GSQ</sub>, I<sub>DQ</sub>, V<sub>DS</sub>, V<sub>S</sub>, V<sub>G</sub> and V<sub>D</sub> for a self bias JFET circuit.

(10 Marks)

b. Determine  $I_{DQ}$ ,  $V_{GSQ}$  and  $V_{DS}$  for the P-channel JFET of Fig. Q8 (b).

(10 Marks)

