CBCS Scheme

IICN					
USIN					

15EC32

Third Semester B.E. Degree Examination, June/July 2017 Analog Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Draw r_e and h-parameter models of a transistor in common emitter configuration. Also give relation between r_e and h-parameter (05 Marks)
 - b. Draw the emitter follower circuit. Derive expressions for i) Z_1 ii) Z_0 iii) Av using r_e model. (06 Marks)
 - c. Draw and explain the hybrid- π model of transistor in CE configuration mentioning significance of each component in model. (05 Marks)

OR

- a. Derive expressions for Z_i, Z₀, Av and A_I for common–emitter fixed bias configuration using hybrid equivalent model. (08 Marks)
 - b. For the circuit shown below, taking $r_0 = \infty \Omega$ calculate i) r_e ii) Z_i iii) Z_0 iv) Av. (08 Marks)

Module-2

- 3 a. With circuit diagram of JFET small signal model, determine g_m and r_d . (08 Marks
 - b. For the JFET common-source amplifier using fixed-bias configuration. Derive expressions for Z_i, Z₀ and Av using AC equivalent circuit. (08 Marks)

For the JFET common-gate configuration shown below, calculate Z_i, Z₀ and Av. (08 Marks)

b. With neat diagram, explain construction of n-channel JFET, and also draw its characteristics. (08 Marks)

Module-3

a. Describe Miller-effect and derive an equation for miller input and output capacitance.

Discuss low frequency response of BJT amplifier and give expressions for low frequency due to input coupling capacitor C_S and output coupling capacitor C_C. (08 Marks)

- Explain high-frequency response of FET amplifier, and derive expression for cutoff 6 frequencies defined by input and output circuits(f_{Hi} and f_{H0}). (08 Marks)
 - For the circuit shown.

Fig.Q6(b)

 $r_0 = \infty \Omega$, $C_{\pi}(cbe) = 36pF$, $C_u(cbc) = 4pF$, $C_{ce} = 1 pF$, $C_{wi} = 6 pF$, $C_{w0} = 8pF$

- i) determine f_{Hi}and f_{H0}
- ii) find f_{β} and f_{T} .

(08 Marks)

Module-4

- 7 a. What is Barkhausen criterion? Explain how oscillations start in an oscillator. (04 Marks)
 - b. With the help of a neat circuit diagram, explain transistor colpits oscillator. Write the expression for frequency of oscillations. (08 Marks)
 - c. A quartz crystal has L = 0.12H, C = 0.04 pF C_M = 1pF and R = 9.2 k Ω , Find :
 - i) series resonant frequency ii) Parallel resonant frequency.

(04 Marks)

OR

- 8 a. Explain characteristics of a quartz crystal. With a neat diagram explain the crystal oscillator in parallel resonant mode. (08 Marks)
 - b. The following component values are given for the Wein-bridge oscillator of the circuit of $R_1 = R_2 = 33k\Omega$ $C_1 = C_2 = 0.001\mu F$ $R_3 = 47 k\Omega$, $R_4 = 15k\Omega$.
 - i) Will this circuit oscillate?
 - ii) Calculate the resonant frequency.

(08 Marks)

Module-5

- 9 a. Explain series fed class A power amplifier. Show that its maximum conversion efficiency is 25%. (08 Marks)
 - b. Explain with circuit diagram the operation of Class-B push-Pull amplifier using complementary-symmetry transistor pair. Also mention advantages and disadvantages of the circuit. (08 Marks)

OF

- 10 a. An ideal class –B push-pull power amplifier with input and output transformers has $V_{CC}=20V,\ N_2=2N_1$ and $R_L=20\Omega.$ The transistors has $h_{fe}=20$. Let the input be sinusoidal. For the maximum output signal at $V_{CE(P)}=V_{CC}$, determine:
 - i) The output signal power
 - ii) The collector dissipation in each transistor
 - iii) Conversion efficiency.

(08 Marks)

- b. The following distortion readings are available for a power amplifier,
 - $D_2 = 0.2$, $D_3 = 0.02$, $D_4 = 0.06$, with $I_1 = 3.3$ A and $R_C = 4\Omega$.
 - i) Calculate the total harmonic distortion
 - ii) Determine the fundamental power component
 - iii) Calculate the total power.

(08 Marks)