CBCS Scheme

	USN			15E
--	-----	--	--	-----

Third Semester B.E. Degree Examination, June/July 2017 Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Convert the given Boolean function into
 - i) Y = f(a, b, c) = (a + b) (a + c) minterm canonical form

(04 Marks)

ii) $P = f(a, b, c) = (a + b) (b + c) (\overline{c} + a)$ maxterm canonical form.

(04 Marks)

b. Using K-map determine the minimal sum of product expression and realize the simplified expression using only NAND gates.

 $M = f(W, X, Y, Z) = \sum (1, 4, 5, 6, 11, 12, 13, 14, 15).$

(08 Marks)

OR

2 a. Simplify the given Boolean function using Quine – McCluskey method:

 $Y = f(a, b, c, d) = \sum (0, 2, 3, 5, 8, 10, 11)$. Verify the result using k-map.

(12 Marks)

b. Distinguish between prime implicant and Essential prime implicant.

(04 Marks)

Module-2

 a. Define Decoder. Implement the following multiple output function using IC 74138 and external gates. Also write the truth table.

$$P = f_1(X, Y, Z) = \sum (1, 2, 5, 6)$$

$$Q = f_2(X, Y, Z) = \pi (3, 5, 6, 7)$$

(06 Marks)

b. Implement the following Boolean function using 8:1 multiplexer:

$$Y = f(A, B, C, D) = \overline{A}B\overline{D} + ACD + \overline{B}CD + \overline{AC}D$$

(10 Marks)

OR

4 a. Design and implement 4-bit look ahead carry adder.

(08 Marks)

b. Design and implement BCD to Excess-3 code converter.

(08 Marks)

Module-3

5 a. Explain the working principle of gated SR latch.

(06 Marks)

b. Explain the working of master slave JK flip-flop with the help of a logic diagram, function table, logic symbol and timing diagram. (10 Marks)

OR

- a. With a neat logic diagram, explain the working of positive edge triggered D flip-flop. Also draw the timing diagram.
 (08 Marks)
 - b. Derive the characteristic equation for JK and T flip-flop.

(08 Marks)

Module-4

- 7 a. Describe the working principle of universal shift register with the help of logic diagram and mode control table. (08 Marks)
 - b. Illustrate the operation of 4-bit binary ripple counter using logic diagram and timing diagram. (08 Marks)

OR

8 a. Design a synchronous Mod-6 counter using clocked T flip-flop.
b. Explain Mod-4 ring counter using D flip-flop.
(06 Marks)

Module-5

- 9 a. Explain Mealy and Moore sequential circuit models. (04 Marks)
 - b. For the logic diagram shown in Fig Q 9(b).
 - i) Write input and output equations
 - ii) Construct transition table
 - iii) Draw state diagram.

(12 Marks)

OR

a. Define the terms as applied to sequential circuit:
Input variable, output variable, Excitation variable and state variable.
b. Design a sequential circuit for a state diagram shown in Fig Q 10(b).
(04 Marks)
(12 Marks)

Fig Q10(b)

* * * * * * 2 of 2