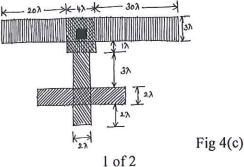
USN

Fifth Semester B.E. Degree Examination, June/July 2017 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.


PART - A

- Describe in detail the step-by-step procedure involved in the fabrication of nMOS. (08 Marks)
- Calculate the threshold voltage with $\epsilon_{si} = 11.7 \epsilon_0$, $\epsilon_{ox} = 3.9 \epsilon_0$ for an nMOS transistor with $O_{fc} = 0$, $N_i = 1.45 \times 10^{10} / \text{cm}^3$, $N_A = 5 \times 10^{17} / \text{cm}^3$, $t_{ox} = 150 \,\text{Å}$ and $\phi_{ms} = -0.9 \,\text{V}$ using the equation $V_t = V_{tmos} + V_{fb}$. Plot the graph of 'V_t' versus 't_{ox}' for t_{ox} ranging from 50 Å to 300 Å and interpret the graph. (06 Marks)
 - With the truth table, draw the schematic for 2:1 MUX and 2-input XOR gate using (06 Marks) transmission gate.
- List the colour, stick encoding, mask layout encoding for n-diffusion, p-diffusion, (07 Marks) polysilicon metal 1 and metal 2.
 - Draw the circuit and stick diagram for one-bit CMOS shift register. b.
 - Draw the optimum layout of CMOS inverter whose $\left(\frac{W_p}{W_n}\right) = \frac{4}{2}$ by stitching the source and drain regions of 2:1 inverter with the contacts and metal. Discuss the merits of such design. Given $L_p = L_n = 1$. [Hint: Placing the transistor back to back]. (07 Marks)
- Write the voltage-current equations for nMOS and pMOS transistor, with V-I characteristics 3 a. (08 Marks) discuss channel length modulation.
 - Realize the boolean equation using CMOS and C^2MOS logic $Z = \overline{A(B+C) + DE}$ (06 Marks) b.
 - Discuss BiCOMS logic and CMOS domino logic with relevant schematic. (06 Marks)
- Discuss the limits of scaling a.
 - i) Substrate doping
 - ii) Limits on miniaturization
 - iii) Limits on interconnect and contact resistance.

(06 Marks)

(06 Marks)

- Describe the possible effect of propogation delay in cascaded pass transistors and long polysilicon wires.
- Calculate the area capacitance of a multilayer structure shown in Fig Q4(a), if feature size = 5 μ m and relative value of metal to substrate = 0.075, polysilicon = 0.1, diffusion = 0.25. (08 Marks)

(10 Marks)

(10 Marks)

PART - B

- 5 a. Discuss the architectural issues to be followed in the design of a VLSI subsystem. (08 Marks)
 - b. Show an arrangement to generate any logic function of two variable (A, B) by programming the inputs $I_0 I_3$ appropriately with 0's and 1's using 4-way multiplexer. (08 Marks)
 - c. Define Metastability. Find the MTBU (t_f) of a system given $f_c = 50 \text{MHz}$, $f_d = 100 \text{KHz}$, $t_f = 10 \text{ns}$, $T_0 = 0.1 \text{s}$, $\tau_r = 0.2 \text{ns}$ using the equation MTBU (t_f) = $\frac{1}{f_c f_d T_o e^{\frac{-t_f}{\tau_r}}}$. (04 Marks)
- 6 a. Design a 4-bit serial-parallel multiplier.
 - b. Derive carry look ahead adder equations and design a 4-bit CLA adder with a combination of ripple-through, given the following equation for carry and sum is

$$C_k = A_k \cdot B_k + (A_k + B_K)C_{k-1}$$

$$S_k = A_k \cdot B_k + B_k \cdot C_k + C_k \cdot A_k$$

Where A, B, C are input variables and $K = \{0, 1, 2, \dots, n-1\}$.

- 7 a. Discuss the various system timing considerations. (06 Marks)
 - b. Describe the working of CMOS pseudo static RAM cell. Determine the area requirement, estimated dissipation per bit stored and volatility of the same. (08 Marks)
 - c. Draw the schematic of 6-transistor SRAM cell. Discuss read 'O' and write 'O' operations with appropriate schematic diagrams. (06 Marks)
- 8 a. Mention the types of I/O pads and discuss their functionalities. (08 Marks)
 - b. Discuss noise margin in CMOs technology for a cascaded inverters (set of 2). Draw the noise margin graphs indicating NM_H, NM_L, V_{OH}, V_{IL}, V_{OL} and V_{IH} (08 Marks)
 - c. From the Figure Q 8(c) shown below, identify appropriate widths for nMOS and pMOS transistors to obtain optimum delay and area. (04 Marks)

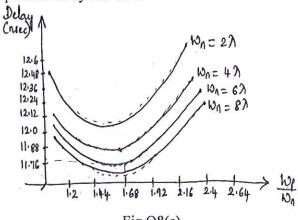


Fig Q8(c)

* * * * *