	TE !		JETR	3 13	350	1300	181	Star
USN	178		1-43	16)			4 8	
0.51			1 6	SHEET T	-63		1 1	i i i

Fifth Semester B.E. Degree Examination, June/July 2017

Transmission Lines and Waveguides

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Starting from the fundamental, derive the expression for the voltage and current at any point on the transmission line. (10 Marks)
 - b. Derive the expression for attenuation constant phase constant and velocity of propagation for an ordinary telephone cable. (04 Marks)
 - c. The primary constant of a μW transmission lines are : $R=1.5~\Omega/m$, G=0.2~mT/m, L=2.5 nH/m and C=0.1 pF/m. The transmission line is terminated in a 400 Ω pure resistance and operated at a frequency of 1.5GHZ. If the length of the line is 20m, Find :
 - i) Characteristic impedance ii) Propagation constant iv) Phase constant v) Wavelength and vi) Phase velocity. (06 Marks)
- 2 a. Design a constant K-LPF having $f_c = 2000 Hz$ and nominal characteristic impedance = 600Ω . Also find the frequency at which the filter offers attenuation of 19.1dB. (08 Marks)
 - b. A load impedance of $z_t = 60 j80\Omega$ is required to be matched to a 50Ω coaxial line by using a short circuit stub of length ' ℓ ' and placed at a distance 'd' from the load. The wavelength of operation is 1m. Using smith chart find ' ℓ ' and 'd' write the suitable steps of construction.

 (08 Marks)
 - Discuss the application of smith chart. (04 Marks)
- 3 a. Derive the expression for input impedance of an open circuit and short circuit line. (06 Marks)
 - b. Derive the relation between SWR and reflection coefficient.
 c. Illustrate the SWR of a lossless line.
 (06 Marks)
- 4 a. Explain the S matrix for a multipart network. (06 Marks)
 - b. Deduce the symmetrical property of S-matrix. (06 Marks)
 - c. Discuss the different losses in a microwave network. (08 Marks)

PART - B

- 5 a. With a neat diagram, explain the working of 2 hole directional coupler. (10 Marks)
 - b. With a neat diagram explain the operation of Faraday rotation isolator. (10 Marks)
- 6 a. What is GUNN effect? With a neat diagram explain the construction details of a Gunn diode. (10 Marks)
 - With a neat sketch explain the operation of IMPATT diode and draw the negative resistance curve.

10TE54

a. Explain the parametric amplifier with equivalent circuit. (10 Marks) b. An IMPATT diode has the following parameters: $= 2 \times 10^7 \,\mu\text{m/s}$ Carrier drift velocity V_d Drift region length L 6µ.m Maximum operating voltage 100V Maximum operating current 200mA 15% Efficiency n Break down voltage V_{th} = 90V. Compute i) Maximum output power and ii) Resonant frequency. (05 Marks) c. A typical Si-BARITT diode has the following parameters: Relative dielectric constant $C_r = 12.5$ Cloner concentration $N = 3.2 \times 10^{22}/m^3$ $E_0 = 8.854 \times 10^{-12}$ Drift length $L = 8\mu m$. Calculate: i) Critical voltage ii) Break down voltage iii) Break down electric field. (05 Marks) 8 Write short notes on: TE, TEM, Modes in parallel lines b. BARITT diode c. PIN diode d. Properties of S-matrix. (20 Marks)

2 of 2