CRASH COURSE

1

Seventh Semester B.E. Degree Examination, May 2017 **Embedded System Design**

Time: 3 hrs.

		Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.
		$\underline{PART - A}$
1	a.	With the help of high level flow of development process, discuss about embedded system
	b.	life cycle. (08 Marks) What are the major aspects in the development of embedded applications and important
	0.	steps in developing an embedded system? (06 Marks)
	c.	Explain the architecture of a typical embedded system using microprocessor. (06 Marks)
2	a.	Analyze how the errors propagate under (i) addition and (ii) multiplication of two perfect numbers N_1 and N_2 . (06 Marks)
	b.	Express signed integer, float and three operand instructions in little endian and big endian
		formats. (06 Marks)
	c.	With the help of high level block diagram, consisting of logic and memory device blocks,
		explain finite state machine. Define Mealy and Moore machines. (08 Marks)
3	a.	Draw typical memory chip internal architecture. With the help of timing diagram, explain
		memory access time. (08 Marks)
	b.	With a neat diagram, explain cache system architecture. (06 Marks)
	c.	Explain: (i) swapping, (ii) overlays, (iii) multiprogramming. (06 Marks)
4	a.	With the help of neat diagram, explain water fall and spiral life cycle models. (08 Marks)
	b.	Discuss on cohesion and coupling. (06 Marks)
	c.	Explain formulating the hardware architecture of embedded system, considering the
		example of digital counter. (06 Marks)
		PART – B
5	a.	Illustrate the models of single process and multiple processes. (08 Marks)
_	b.	With neat block diagram, explain single process-single thread design and multi process-
		multithread design. (08 Marks)
	c.	With a basic diagram, explain possible task states. (04 Marks)
6	а	Illustrate virtual machine and high-level operating system architectures (08 Marks)

Explain: (i) Kernel, (ii) ISR, (iii) Masking Interrupts.

Max. Marks:100

Organize 64 general purpose registers: (i) As four different contexts, (ii) With overlapping contexts. (06 Marks) 7 a. Using Big-O arithmetic rule, explain 'For' loop and 'While' loop with example. (08 Marks)

b. Analyze the following algorithm and calculate complexity function f(50), f(1000) int total (int myArray[], int n)

```
int total (int inyArray[], int in)
{
   int j;
   int s = 0;
   for (j = 0; j < n; j++)
        s = s+ myArray[j];
   return s;
}</pre>
```

(08 Marks)

c. With the block diagram, explain co-routine.

(04 Marks)

8 a. What is time loading? Explain any two primary methods used to compute the time.

Explain loop-invariant and flow of control optimization. (06 Marks)

(06 Marks)

c. Why cache behavior is the major problem in real time embedded application? What are the possible solutions? (08 Marks)

* * * * *