Time: 3 hrs.

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be

Seventh Semester B.E. Degree Examination, June/July 2017

Digital Image Processing

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Explain the fundamental steps in digital image processing.
 - b. Explain mass storage capability in image processing applications and also its principal categories. (07 Marks)
 - c. Write a note on optical illusions. (05 Marks)
- 2 a. Consider the two image subsets s_1 and s_2 shown in Fig. Q2(a). For $v = \{1\}$, determine whether these two subsets are: i) 4-adjacent ii) 8-adjacent iii) m-adjacent. (06 Marks)

b. Explain the process of generating digital image.

(08 Marks)

c. Explain linear and non-linear operations in digital image processing.

(06 Marks)

a. Define 1D-unitary transform, and mention its properties.

(06 Marks)

b. Compute 2D-DFT of a 4 × 4 grey scale image shown in Fig.Q3(a) and corresponding inverse DFT. (08 Marks)

c. Prove that $FF^{*T} = 1$, where F is the DFT matrix.

(06 Marks)

- 4 a. Write the generation of N × N Hadamard transform matrix by iterative rule. Mention its advantages and properties. (08 Marks)
 - b. What are the properties of slant transform and also find forward slant transform and inverse slant transform of U.

Where
$$U = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
. (06 Marks)

c. Define 1-Dimensional DCT for N = 4 obtain $N \times N$ cosine transform matrix(c). (06 Marks) 1 of 2

PART – B

5	a. b.	Explain the following terms with respect to image enhancement. Log transformation Bit-plane slicing	
	c. d.	Histogram equalization Image averaging. (20)	0 Marks)
6	a.	Draw the block diagram of a homomorphic filtering approach for image enhancemexplain it.	nent and 8 Marks)
	b. с.	Explain Butterworth lowpass filter for smoothing. (00	6 Marks) 6 Marks)
7	a. b.	Discuss the various mean filters for restoration in the presence of noise only-spatial f	Marks) Iltering. Marks)
8	a.b.c.	trichromatic coefficients interms of X, Y and Z. Draw the block diagram of a gray level to color transformations and explain it. (08)	rite the B Marks) B Marks) B Marks)

2 of 2