CBCS SCHEM

15EC36 USN

Third Semester B.E. Degree Examination, July/August 2021 **Engineering Electromagnetics**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions.

- State and explain Coulomb's law of force between two point charges and mention the units 1 (06 Marks) of quantities in the force equation.
 - Three equal charges of 1 µC each are located at the three corners of a square of 10 cm side. Find the electric field intensity at the forth vaccent point of the square. (10 Marks)
- a. A line charge $\rho_L = 50$ nC/m is located along the line x = 2, y = 5 in free space. Find \acute{E} at P(1, 3, -4). (06 Marks)
 - Derive the expression of electric field intensity due to infinite line charge. (10 Marks)
- State and prove the Gauss's law. (10 Marks)
 - Given the flux density $\vec{D} = \frac{5\sin\theta \cdot \cos\phi}{r} \hat{a}_r$ C/m². Find (i) Volume charge density
 - (ii) Total flux leaving the surface of spherical volume of radius 2 m. (06 Marks)
- State and derive the expression of law of continuity of current. (07 Marks)
 - An electric potential is given by,

$$V = \frac{60 \sin \theta}{r^2} \text{ volt. Find V and E at point P(3, 60°, 25°)}.$$
 (06 Marks)

- Express $\vec{\nabla}.\vec{D}$ in three coordinate systems. (03 Marks)
- Starting from Gauss's law in integral form, derive Laplace's and Poisson's equations. Write the Laplace equation in all the coordinate systems. (06 Marks)
 - b. Determine whether or not the following vectors represent a possible electric field:

$$\vec{E} = (12yx^2 - 6z^2x)\hat{a}_x + (4x^3 + 18zy^2)\hat{a}_y + (6y^3 - 6zx^2)\hat{a}_z$$
 (03 Marks)

- State and prove uniqueness theorem. (07 Marks)
- State Biot-Savart law. Obtain an expression for magnetic field intensity for current element. (08 Marks)
 - Explain the concept of scalar and vector magnetic potential and show that

$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}}{r} dV$$
. where \vec{A} = Vector magnetic potential and J = current density (08 Marks)

- Write short notes on force between two differential current elements. (08 Marks)
 - A point charge $\theta = -60 \,\text{nC}$, is moving with a velocity $6 \times 10^6 \,\text{m/s}$ in the direction specified by unit vector $(-0.48\hat{a}_x - 0.6\hat{a}_y + 0.64\hat{a}_z)$. Find the magnitude of the force on a moving charge in the magnetic field

$$\vec{B} = (2\hat{a}_x - 6\hat{a}_y + 5\hat{a}_z) \text{mT}. \tag{08 Marks}$$

- 8 a. Derive the expression for the boundary condition for the tangential component at the interface between two media with different permeabilities. (06 Marks)
 - b. If $\vec{B} = 0.5x\hat{a}_yT$ in a material for which $\chi_m = 2.5$ find,
 - (i) μ_r
- (ii) μ
- (iii) \vec{H}
- (iv) M
- (v) \overrightarrow{J} .

(10 Marks)

9 a. Write Maxwell equations in points form and integral form.

(06 Marks)

b. State and prove Faraday's law.

(05 Marks)

c. Given $\overrightarrow{H} = H_m e^{j(\omega t + \beta z)} \hat{a}_x$ A/m in free space. Find \overrightarrow{E} .

(05 Marks)

10 a. Derive the expression for Poynting's theorem.

MRIT LIBRARI

(10 Marks) (06 Marks)

b. Write the short notes on skin effect.

* * * *