

Time: 3 hrs

18EC42

Fourth Semester B.E. Degree Examination, July/August 2021

Analog Circuits

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Explain the voltage divider biasing for BJTs using single power supply. How does R_E provides a negative feedback action to stabilize the bias current with necessary supporting mathematical equations. (08 Marks)
 - b. For the circuit shown in Fig.Q1(b), derive the expression of voltage gain.

Fig.Q1(b)

(06 Marks)

- c. A BJT having $\beta = 100$ is biased at a dc collector current of 1 mA. Find the value of g_m , r_e and r_{π} at the bias point. Assume $V_T = \frac{1}{40}V$ (06 Marks)
- 2 a. For the circuit shown in Fig.Q2(a), find the required value of V_{GS} to establish a dc bias current $I_D=0.5$ mA. Device parameters are $V_t=1$ \widehat{V} , $K_n'\frac{W}{L}=1$ mA/ V^2 and $\lambda=0$. What is the percentage change in I_D obtained when the transistor is replaced with another having $V_t=1.5$ V.

Fig.Q2(a)

(08 Marks)

- b. What is trans-conductance of a MOSFET and mention the three different expression used to calculate the trans-conductance. (06 Marks)
 - Explain biasing of MOSFET by fixing V_{GS}.

(06 Marks)

3 a. For the circuit shown in Fig.Q3(a), derive the expression of R_{in} , R_o , A_{V_o} and A_V using T-model.

Fig.Q3(a) (10 Marks)

- b. With mathematical equations, explain the different internal capacitances in the MOSFET.
 (10 Marks)
- 4 a. Explain the high frequency response of a CS amplifier using MOSFET and derive its upper cutoff frequency. (10 Marks)
 - b. Explain the working principles of Colpitts oscillator and also discuss the drawback of this oscillator are over come using Clapp oscillator. (10 Marks)
- 5 a. In a particular circuit represented by the block diagram shown in Fig.Q5(a), a signal of 1V from the source results in a difference signal of 10 mV being provided to the amplifier (A) and 10V applied to the load. For this arrangement identify the value of A and β that apply.

Fig.Q5(a) (06 Marks)

BANGALORE - 560 037

- b. Draw the general feedback structure and explain with necessary expressions. (06 Marks)
- c. What are the properties of negative feedback and explain it. (08 Marks)
- 6 a. What is output stage and discuss the classification of output stages based on the collector current? (06 Marks)
 - b. A transformer coupled class A power amplifier drawn a current of 200 mA from the collector supply of 10 V, when no signal is applied it. Determine:
 - (i) Maximum output power
 - (ii) Maximum collector efficiency
 - (iii) Power rating of the transistor

If the load connected across the transformer secondary is 2 Ω and transformer turn ratio is 5:1.

- c. Explain the working of class A output stage amplifier and also prove that power conversion efficiency is 25%. (08 Marks)
- 7 a. Derive the expression of exact voltage gain and ideal voltage gain of a voltage shunt feedback amplifier using OP-AMP. (08 Marks)
 - b. The 741 OP-AMP having the following parameter is connected as a non-inverting amplifier with $R_1 = 1 \text{ K}\Omega$ and $R_F = 10 \text{ K}\Omega$. Given A = 200000, $R_i = 2 \text{ M}\Omega$, $R_0 = 75 \Omega$, $f_0 = 5 \text{ Hz}$ and supply voltage = $\pm 15 \text{ V}$. Compute the value of A_F , R_{iF} , R_{OF} and f_F . (06 Marks)
 - c. With the circuit and waveforms, explain the working of non-inverting comparator. (06 Marks)

- Explain the working of instrumentation amplifier using transducer bridge and derive the 8 expression of output voltage. (10 Marks)
 - Explain the operation of a inverting Schmitt Trigger.

(06 Marks)

The circuit shown in Fig.Q8(c) is to be used as averaging amplifier with the following specifications: $V_a = V_b = 1.5 \text{ V}$, $V_c = 3V$, $R_1 = R = 1.5 \text{ K}$ and $V_0 = 5.2 \text{ V}$. Determine the required value of R_F.

(04 Marks)

- Derive the expression of output voltage of a binary weighted resistor type DAC. (08 Marks)
 - b. For the DAC using an R-2R network with R = 10 K Ω , R_F = 27 K Ω and V_R = 5V.
 - Determine the size of each step (i)
 - (ii) Calculate the output voltage when $b_0 = b_1 = b_2 = b_3 = 5V$.

(06 Marks)

- c. Explain the working of a first order active low pass filter with circuit and frequency (06 Marks) response.
- Explain the operation of a successive approximation DAC and mention its advantages. 10

(08 Marks)

Mention the applications of 555 IC Timer.

(04 Marks)

Design an Astable Multivibrator using 555 IC Timer with

 $f_0 = 1 \text{ kHz and } D = 40\%$

BANGALORE - 560 037

- $f_0 = 2 \text{ kHz and } D = 50\%$ (iii) $f_0 = 1 \text{ kHz and } D = 70\%$

Assume $c = 0.01 \mu F$ for all cases.

(08 Marks)