

		CBCS SCHEME	
USI	N. E.		18EC56
R. INS	ALIEN STATE	Fifth Semester B.E. Degree Examination, July/August 2	021
(z)	-institution	Verilog HDL	
Ti	ne:		k. Marks: 100
	*	Note: Answer any FIVE full questions.	
1	a.	Explain the various stages used in VLSI design with a neat flow diagram.	(08 Marks)
	b.	Design a 4-bit ripple carry counter using a top-down design methodology.	(08 Marks)
	c.	Compare the HDL programming to traditional software programming.	(04 Marks)
2	_	Circ the immediate of stire 1 the 1 Feederic the 100 of stire	11111
2	a.	Give the importance of stimulus block. Explain the different styles of stimular for testing the design.	iius biock used (08 Marks)
	b.	Explain the different levels of abstraction.	(06 Marks)
	c.	Write a pseudo verilog code for 4-bit ripple carry adder with following descrip	
		i) Define a module FA with input A, B C in, sum and carry with no intern	
		ii) Instantiate 4 full adders of the type FA in the module Ripple-Add and	
		FA0, FA1, FA2 and FA3.	(06 Marks)
•			, i.e
3	a.	Illustrate with examples the data types used to define nets, registers, vectors a	nd arrays. (08 Marks)
	b.	Differentiate i) \$display and\$ monitor ii) \$stop and \$finish with examples.	(06 Marks)
	c.	Declare a top-level module as TOP for stimulus. Define a constant N of s	
		(8 bit) LOAD_EN(1-bit), LOAD_VAL (8-bit) and CLK(1bit) as register	variables, and
		OUI_ REG (8-bit) as wire. Instantiate the module shift_reg and call it as SI	Rl. Connect the
		port by named list.	(06 Marks)
4	a.	Illustrate with example the post connection rule of verilog HDL programming	g. (08 Marks)
7	b.	Draw the logic diagram of SR latch. Develop the verilog code for SR latch	
	o.	components and hence write the test bench to verify the functionality.	(08 Marks)
	c.	Declare the following variables in verilog.	,
		i) Net 'A is fixed to logic value '0' at declaration	
		ii) Vector register, Address_bus of 41 bit wide	
	ja.	iii) A memory MEM containing 256 words of 64 bit each	
	6	iv) An integer called count.	(04 Marks)

- Design a 4-bit ripple carry full adder using 1-bit full adder. Develop the verilog code for a 5 4-bit ripple carry full adder using gate level modeling. Verify the functionality with (08 Marks) appropriate test bench.
 - Given A = 5'b10101; B = 5'b11101; C = 5'b11001; D = 5'b10011. Evaluate.
 - i) Y = A & B
- ii) $Y = \sim (\& C)$
- iii) $Y = C^{\wedge} D$

iv) Y = C% A

 $^{\circ}$ v) Y = A + (D>>>1)

vi) $Y = \{B[3], C[2], A\}$

(06 Marks)

Discuss the gate delays along with its types of delay specification.

(06 Marks)

6 a. Design a 4-bit ripple carry counter using TFF. Write the verilog code using data flow modeling. Verify the code with appropriate test bench. (08 Marks)

b. Design a 2×1 MUX using bufif0 and bufif1 gates. Write the verilog code using gate level

modeling for the given delay specification.

	Min	Max	Тур
Rise	1	3	2
Fall	3 0	5	4
Turnoff	5	7	6

(06 Marks)

c. Discuss the types of delays used in the continuous assignment statement.

(06 Marks)

- 7 a. i) Differentiate blocking and non-blocking statement with appropriate examples.
 - ii) Design a clock with period 40 and a duty cycle of 25% by using the always and initial statement. The value of clock at time = 0 is initialized to 0. Display the value. (08 Marks)
 - b. Design a 4×1 MUX and develop a verilog code using case statement. (06 Marks)
 - c. Bring out the differences and similarities between task and function.

(06 Marks)

CMRIT LIBRARY BANGALORE - 560 037

- 8 a. Compare sequential and parallel block with appropriate example. (06 Marks)
 - b. Define a task to compute the parity of a 16-bit data. Write a verilog code to call task calc-parity to compute the parity. Display the message as even or odd parity. (08 Marks)
 - c. Discuss the for loop and forever statement with example.

(06 Marks)

9 a. Illustrate with examples the system tasks related to files.

(06 Marks)

- b. Write a verilog program for a positive edge triggered DFF with asynchronous clear (q = 0) and preset (q = 1) using assign and deassign statements. (06 Marks)
- c. Give the importance of parameter overriding. Explain the two techniques of parameter overriding with examples. (08 Marks)
- 10 a. List the limitation of manually obtained gate level synthesis of design. How these are analyzed and addressed using automated logic synthesis tools. (08 Marks)
 - b. Discuss in detail the steps involved in the logic synthesis flow from RTL to gates with a neat flow diagram. (08 Marks)
 - c. Interpret the gatelevel netlist diagram for the following when run on a synthesis tool.
 - i) assign out = (Sel)? I1 : I0;
 - ii) always @ (posedge clk)

 $q \leftarrow d$;

(04 Marks)