Fifth Semester B.E. Degree Examination, July/August 2021

Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Explain the Fabrication steps of CMOS-P-Well process with neat diagram, write the mask sequence. (10 Marks)
 - b. Explain second order effects with respect to a MOS device.

(10 Marks)

- 2 a. With neat circuit diagram and relevant mathematical equations explain differential inverter.
 - b. Draw the circuit schematic, stick diagram and layout diagram of nMOS, 2 I/P Nand Gate.
 (10 Marks)
- 3 a. Describe the following logic structures:
 - i) Complementary CMOS logic
 - ii) Pseudo nMOS logic.

(10 Marks)

- b. Explain the operation of CMOS dynamic logic. Also discuss the cascading problems of dynamic CMOS logic. (10 Marks)
- 4 a. Calculate the capacitance of the structure given below.

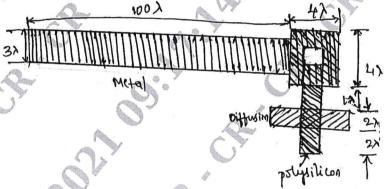


Fig.Q.4(a)

Relative area capacitance values Metal 1 to substrate = 0.075 Polysilicon to substrate = 0.1

Gate to channel = 1.0

(10 Marks)

- b. Obtain the scaling factors for the following device parameters.
 - i) Gate capacitance per unit area (C_o)
 - ii) Channel resistance (R_{on})
 - iii) Gate Delay (T_D)
 - iv) Saturation current (I_{dss})
 - v) Power dissipation / Gate Pg.

(10 Marks)

Discuss the architectural issues related to subsystem design. (10 Marks) 5 Explain dynamic register element and 4 bit shift register using nMOS and CMOS logic. b. (10 Marks) 6 Design 4×4 barrel shifter. (10 Marks) With the neat diagram, explain parity generator structured design. (10 Marks) Explain three transistor dynamic RAM cell. 7 (10 Marks) a. Explain CMOS pseudo static memory cell. (10 Marks) 8 Explain scan design techniques. (10 Marks) Write short notes on: b. Noise Margin i) ii) I/O pads iii) Silicides. (10 Marks)