(08 Marks)

2. Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USNUTE OF

Fifth Semester B.E. Degree Examination, July/August 2021 Digital Signal Processing

Note: Answer any FIVE full questions.

Max. Marks: 80

- a. Compute the N-point DFT of the sequence, x(n) = a.n $0 \le n \le N-1$.
 - b. Obtain the relationship between DFT and Z-transform. (04 Marks)
 - c. Find the Inverse DFT of the sequence X(K) = (2, 1 + j, 0, 1 j). (04 Marks)
- 2 a. Compute the 8-point DFT of the sequence x(n) given below:

$$x(n) = (1, 1, 1, 1, 0, 0, 0, 0).$$
 (06 Marks)

b. Compute the N-point DFT of the sequence,

$$x(n) = a^n$$
, $0 \le n \le N - 1$. (04 Marks)

c. Find the IDFT of 4-point sequence, X(K) = (4,-j2,0,j2) using the DFT.

(06 Marks)

3 a. In many signal processing applications, we often multifly an infinite length sequence by a window of length N. The time-domain expression for this window is,

$$w(n) = \frac{1}{2} + \frac{1}{2}\cos\left[\frac{2\pi}{N}\left(n - \frac{N}{2}\right)\right]$$

What is the DFT of the windowed sequence, y(n) = x(n)w(n)? Keep the answer in terms of X(n). (07 Marks)

- b. Let x(n) be a real sequence of length N and its N-point DFT is given by X(K). Show that :
 - (i) X(N-K) = X*(K).
- (ii) X(0) is real, and
- (iii) If N is Even, $X\left(\frac{N}{2}\right)$ is real.

(09 Marks)

- 4 a. Let x(n) = (1, 2, 0, 3, -2, 4, 7, 5). Evaluate the following:
 - (i) X(0) (ii) X(4) (iii) $\sum_{K=0}^{7} X(K)$ (iv) $\sum_{K=0}^{7} |X(K)|^2$ (08 Marks)
 - b. Perform x(n)*h(n), $0 \le n \le 11$ for the sequence x(n) and h(n) given below using overlap-add based fast convolution technique. Choose appropriately number of points of circular convolution.

$$h(n) = (1, 1, 1)$$

and $x(n) = (1, 2, 0, -3, 4, 2, -1, 1, -2, 3, 2, 1, -3)$ (08 Marks)

5 a. Find the 4 point circular convolution of x(n) and h(n) given in Fig. Q5 (a) using radix-2 DIF-FFT algorithm. (08 Marks)

Fig. Q5 (a)

b. Find the 8-point DFT of sequence x(n), x(n) = (1, 1, 1, 1, 0, 0, 0, 0) using DIT-FFT radix-2 algorithm. Use the butterfly diagram. (08 Marks)

1 of 3

6 a. Derive the DIT-FFT algorithm.

(08 Marks)

- b. Find number of complex multiplications and complex additions in finding 512 point DFT.

 (02 Marks)
- c. Find the 4-point real sequence x(n) if its 4-point DFT samples are X(0) = 6, X(1) = -2+j2, X(2) = -2. Use DIF-FFT algorithm. (06 Marks)
- 7 a. Draw the block diagrams of direct form-I and direct form-II realization for a digital IIR filter described by the system function.

$$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}.$$
 (08 Marks)

b. Obtain a parallel realization for the system described by,

$$H(z) = \frac{\left(1 + z^{-1}\right)\left(1 + 2z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 + \frac{1}{8}z^{-1}\right)}.$$
 (08 Marks)

- 8 a. Design an analog bandpass filter to meet the following frequency domain specifications:
 - (i) a 3.0103 dB upper and lower cut-off frequency of 50 Hz and 20 kHz.
 - (ii) a stopband attenuation of atleast 20 dB at 20 Hz and 45 kHz and
 - (iii) a monotonic frequency response. (08 Marks)
 - b. Let $H_a(s) = \frac{s+a}{(s+a)^2 + b^2}$ be a casual second order transfer function. Show that the casual

second order digital function H(z) is obtained from H_a(s) through impulse invariance method is given by,

$$H(z) = \frac{1 - e^{-aT} \cos bT z^{-1}}{1 - 2 \cos bT e^{-aT} z^{-1} + e^{-2aT} z^{-2}}.$$
 (08 Marks)

9 a. The desired frequency response of a low pass filter is given by,

$$H_d(e^{jw}) = H_d(w) = \begin{cases} e^{-j3w}, & |w| < \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < |w| < \pi \end{cases}$$

CMRIT LIBRARY

BANGALORE - 560 037

Determine the frequency response of the FIR filter if Hamming window is used with N = 7.

(08 Marks)

b. Determine the co-efficients K_m of the lattice filter corresponding to FIR filter described by the system function,

$$H(z) = 1 + 2z^{-1} + \frac{1}{3}z^{-2}$$

Also, draw the corresponding second order lattice structure.

(08 Marks)

10 a. A low pass filter is to be designed with the following desired frequency response:

$$H_{d}(e^{jw}) = H_{d}(w) = \begin{cases} e^{-j2w}, & \left| w \right| < \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < \left| w \right| < \pi \end{cases}.$$

Determine the filter co-efficients $h_d(n)$ and h(n) if w(n) is a rectangular window defined as follows:

$$w_R(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

Also find the frequency response, H(w) of the resulting FIR filter.

(06 Marks)

b. Realize the linear-phase FIR filter having the following impulse response.

$$h(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2) + \frac{1}{4}\delta(n-3) + \delta(n-4).$$
 (06 Marks)

c. Realize an FIR filter with impulse response h(n) given by,

CMRIT LIBRARY
RANGALORE - 560 037

$$h(n) = \left(\frac{1}{2}\right)^n \left[u(n) - u(n-4)\right]$$

Using direct form - I.

(04 Marks)