## Sixth Semester B.E. Degree Examination, July/August 2021 Microelectronic Circuits

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions.

LAGALDraw drain current versus drain-to source voltage characteristic for an enhancement-type NMOS, Mark all regions and explain it.

Design a MOSFET circuit show in Fig.Q.1(b) to obtain a current ID of 80µA. Find the value required for R and find the dc voltage  $V_D$ . Let the NMOS transistor have  $V_t = 0.6V$ ,  $\mu_n C_{ox} = 200 \mu A/V^2$ , L = 0.8  $\mu$ m and W = 4  $\mu$ m. Neglect the channel length modulation effect.

Fig.Q.1(b)

(06 Marks)

- c. Explain the development the T-equivalent circuit model for the MOSFET and also body effect. (08 Marks)
- For the NMOS transistor with W/L = 10 fabricated in the 0.18 µm process. Find: i) The 2 values of  $V_{OV}$  and  $V_{GS}$  required to operate the device at  $I_D = 100 \mu A$ ; ii)  $V_{BE}$  for an npn transistor fabricated in the low-voltage process and operated at  $I_C = 100 \mu A$ . Assume  $\mu_n C_{ox} = 387 \, \mu \text{A/V}^2$ ,  $V_{tn} = 0.48 \, \text{V}$ ,  $I_S = 6 \times 10^{-18} \, \text{A}$  and  $V_T = 0.02 \, \text{sv}$ . (06 Marks) Explain the process of generating bias current for different amplifier stages of various
  - amplitudes. (06 Marks)
  - Derive the expression of upper 3-dB frequency of an amplifier and also find the 3-dB frequency of a

 $F_{H}(s) = \frac{1 - \frac{1}{10^{5}}}{\left(1 + \frac{s}{10^{4}}\right)\left(1 + \frac{s}{4 \times 10^{4}}\right)}$ (08 Marks)

- a. For the common gate amplifier W/L =  $7.2\mu m/0.36\mu m$ ,  $\mu n$   $C_{ox}$  =  $387\mu A/V^2$ ,  $r_o$  =  $18K\Omega$ ,  $I_D = 100 \mu A$ ,  $g_m = 1.25 \text{mA/V}$ ,  $\chi = 0.2$ ,  $R_S = 10 \text{K}\Omega$ ,  $R_L = 100 \text{K}\Omega$ ,  $C_{gs} = 20 \text{fF}$ ,  $C_{gd} = 5 \text{fF}$ ,  $C_L = 0$ , find  $A_{v_0}$ ,  $R_{in}$ ,  $R_{out}$ , Gv, Gis, Gi and  $f_H$ . (08 Marks)
  - b. Explain the high frequency response of the CS-amplifier using open circuit time constants (08 Marks) and also obtain 3-dB frequency.
  - What is cascade amplifier? Explain the basic idea behind the cascade amplifier. (04 Marks)
- Explain the working of a Wilson current mirror and derive the expression of current transfer (08 Marks) ratio.
  - The differential amplifier shown in Fig. Q.4(b) uses transistors with B = 100, determine:
    - Input differential resistance Rid
    - Over all differential voltage gain ii)
    - Worst-case common-mode gain if the two collector resistances are accurate to within iii) ±1%
    - iv) CMRR.

(08 Marks)



- c. Mention the reasons why differential amplifiers are well suited for IC fabrications. (04 Marks)
- 5 a. Derive the expression of a CMRR of a active loaded MOS differential amplifier. (08 Marks)
  - b. Explain the main functions of multistage amplifier. (06 Marks)
  - c. Draw the circuit of a differential to single ended conversion and explain it. (06 Marks)
- 6 a. Draw the block diagram of a shunt-shunt feedback and derive the expression of input resistance and output resistance with feedback. (08 Marks)
  - b. Discuss the effect of feedback on the amplifier poles. (06 Marks)
  - c. Discuss the properties of negative feedback with mathematical analysis. (06 Marks)
- 7 a. Using the superposition principle to find the output voltage of the circuit shown in Fig.Q.7(a). (04 Marks)



- b. What are the major disadvantages of instrumentation amplifier using op-amp? (04 Marks)
- c. For the circuit shown in Fig.Q.7(c) derive an expressions for the transfer function  $V_0(s)/V_1(s)$ , dc gain and the 3-dB frequency. (06 Marks)



- d. Draw the circuit diagram of sample and hold circuit using op-amp and explain it. (06 Marks)
- 8 a. Discuss the reasons for CMOS displacing bipolar technology in digital applications.
  (04 Marks)
  - b. Implement the following Boolean expression:
    - i)  $F = (\overline{A} + B)(C + \overline{D})$  using OAI gate logic.
    - ii)  $F = \overline{AB} + CD$  using AOI gate logic. (08 Marks) Explain the transistor sizing in CMOS gate circuits. (08 Marks)