Sixth Semester B.E. De Micro

Sixth Semester B.E. Degree Examination, July/August 2021

Microwaves and Radar

Max. Marks: 100

Note: 1. Answer any FIVE full questions.

2. Use of Smith chart may be permitted.

1 a. Define and derive expression for reflection coefficient and transmission coefficient.

(10 Marks)

b. What are standing waves and standing wave ratio?

(05 Marks)

- c. A load impedance $Z_L = 60 J80 \Omega$ is required to be matched to a coaxial line by using a short circuited stub of length 'L' located at a distance 'd' from the load. The wavelength of the operation is 1 meter, using Smith chart find 'd' and 'L'. (05 Marks)
- 2 a. With a schematic diagram, explain the directional coupler, and derive an expression with scattering matrix representation of the directional coupler. (10 Marks)
 - b. With a neat diagram, explain the operation of faraday rotation isolator. (05 Marks)
 - c. A rectangular waveguide cavity filled with dielectric constant $\varepsilon_r = 4$ has a breadth of 4 cm and height of 2 cm. Find the length of the cavity to produce resonance at 4 GHz. Assume TE₁₀₁ mode. (05 Marks)
- 3 a. Explain the principle of operation of GUNN DIODE and explain the different modes of Gunn diode with waveform and graph. (10 Marks)
 - b. Explain the application of PIN diode as a switch.

(05 Marks)

c. Explain the operation of parametric amplifier.

(05 Marks)

4 a. What are the different properties of scattering parameter?

(10 Marks)

b. Show that matrix 'Z' and matrix 'Y are symmetrical for microwave reciprocal network.

(05 Marks)

- c. Express S parameter in terms of impedance when two transmission lines are joined with characteristic impedance Z₁ and Z₂. (05 Marks)
- 5 a. Explain the characteristics of magic tee, with a schematic diagram, also obtain the S-matrix representation of the magic tee. (10 Marks)
 - b. With neat diagram, explain the operation of precision type variable attenuator. (05 Marks)
 - c. Write a note on different types of co-axial connector.

(05 Marks)

- 6 a. With neat diagram, explain the operation of parallel stripline. And also write the expression for distributed parameters of parallel stripline, characteristic impedance and attenuation of the same.

 (10 Marks)
 - b. Explain the different losses in the striplines.

(05 Marks)

- c. A microstrip line has the following parameter. Calculate the characteristic impedance Z_0 of the line, $E_r = 5.23$, h = 7 mils, t = 2.8 mils and w = 10 mils. (05 Marks)
- 7 a. Derive the radar range equation and discuss the maximum range performance. (10 Marks)
 - b. Explain briefly the application of RADAR.

(05 Marks)

- c. Calculate the maximum range of Radar, which operates at a frequency of 9 GHz peak pulse power of 500 KW. If the antenna effective area is 20 m² and the area of target is 5 m², minimum receivable power is 10⁻¹³ Watt? (05 Marks)
- 8 a. With block diagram, explain the operation of moving target indicator. (10 Marks)
 - b. What is blind speed? Calculate first three blind speed of Radar. If MTI radar operating at $\lambda = 10$ cm and PRF of 1 kHz. (05 Marks)
 - c. Explain briefly Doppler affect.