CBCS SCHEME

USN

15ME81

Eighth Semester B.E. Degree Examination, July/August 2021

Operations Research

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

- 1 a. Define Operation Research. Discuss the scope of Operation Research. (06 Marks)
 - b. A firm manufactures 3 products A, B and C. Time to manufacture product A is twice for B and thrice for C and if the entire labour is engaged in making product A, 1600 units of this product can be produced. These products are to be produced in the ratio 3:4:5. There is demand for at least 300, 250 and 200 units of products A, B and C and the profit earned per unit if Rs.90, Rs.40 and Rs.30 respectively. Formulate the problem as a LPP. (10 Marks)
- 2 a. Discuss the assumptions made in LPP.

(06 Marks)

b. Solve the following LPP graphically:

Maximize $Z = 2x_1 + 3x_2$

Subject to constraints $x_1 + x_2 \le 30$,

$$x_2 \ge 3,$$

 $x_2 \le 12,$
 $x_1 - x_2 \ge 0,$
 $0 \le x_1 \le 20$

(10 Marks)

- 3 a. Explain the significance of following variables in LPP:
 - i) Slack variable
 - ii) Surplus variable
 - iii) Artificial variable.

(06 Marks)

b. Solve by simplex method the following LPP:

Minimize $Z = x_1 - 3x_2 + 3x_3$

Subject to constraints $3x_1 - x_2 + 2x_3 \le 7$,

$$2x_1 + 4x_2 \ge -12$$
,
 $-4x_1 + 3x_2 + 8x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$

(10 Marks)

4 a. What is Pseudo-optimal solution?

(06 Marks)

b. Solve the following LPP by Big-M method

Maximize $Z = 2x_1 + 3x_2 + 4x_3$

Subject to constraint $3x_1 + x_2 + 4x_3 \le 600$,

$$2x_1 + 4x_2 + 2x_3 \ge 480,$$

 $2x_1 + 3x_2 + 3x_3 = 540,$

BANGALORE - 560 037

CMRIT LIBRARY

 $x_1, x_2, x_3 \ge 0$

(10 Marks)

- 5 a. Define the following with respect to transportation problem:
 - i) Basic feasible solution
 - ii) Optimal solution

iii) Degenerate basic feasible solution.

(06 Marks)

b. For the following Transportation Problem a solution is given check it for optimality. If not, modify it to obtain a better solution (next best).

	\mathbf{D}_1	D_2	D_3	D_4	Available units
S_1	6	~ 1	9(50)	3(20)	70
S_2	11(55)	5	2	8	55
S_3	10(30)	, 12(35)	4	7 ₍₂₅₎	*90
Demand units	85	35	50	45	

(10 Marks)

The captain of a cricket team has to allot five middle batting positions to 5 batsmen. The average runs scored by each batsman at these positions are as follows:

			VIII. /					
Dataman	Batting Position							
Batsman	I	II	III	IV	V			
P	40	40	35	25	50			
Q	42	30	16	25	27			
R 4	50	48	40	60	50			
S	20	19	20	18	25			
T	58	60	59	55>	53			

BANGALORE - 560 037

- i) Find the assignment of batsman to positions which would give the maximum number of runs.
- ii) If another batsman 'U' with the following average runs in batting position as given below:

A000, 12	9		7 146	APPROX.	
Battery positions:	I	II	III	IV	V
Average runs scored:	45	52	38	50	49

is added to the team, should he be included to play in the team? If so, who will be replaced by him?

(16 Marks)

- 7 a. Define:
 - i) Preceding activity
 - ii) Dummy activity
 - iii) Network
 - iv) Slack.

(06 Marks)

b. Tasks A, B, C,...H, I constitute a project. The precedence relationships are A < D, A < E, B < F, D < F, C < G, C < H, F < I, G < I.

Task:	A	В	C	D	Е	F	G	Н	I
Time, days:	8	10	8	10	16	17	18	14	9

i) Draw the network

ii) Identify the critical path and duration.

(10 Marks)

8 a. Discuss the operating characteristics of a queueing system.

(06 Marks)

- b. A typist at an office of a company receives on the average 20 letters/day for typing. The typist works 8 hours a day and it takes on the average 20 minutes to type a letter. The cost of a letter waiting to be mailed is 80 paise/hr and the cost of the equipment plus salary of the typist is Rs.45 per day.
 - i) What is the typists utilization rate?
 - ii) What is the average number of letters waiting to be typed?
 - iii) What is the average waiting time needed to have a letter typed?
 - iv) What is the total daily cost of waiting letters to be mailed.

(10 Marks)

- 9 a. Define:
 - i) Strategy
 - ii) 2 person zero sum game
 - iii) Pay off matrix.

(06 Marks)

b. Solve the following game by using principle of dominance:

	Player B						
	I	II 4	III	IV	V	VI	
1	4	2	0	2	1	1	
2	4	3	1	3	2	2	
3	4	3	7	-5	1	2	
4	4	3	4	-1	2	2	
, 5	4	3	3	-2	2	2	
	1 2 3 4 5	I 1 4 2 4 3 4 4 4 5 4	1 4 2	I II III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I II III IV 1 4 2 0 2	I II III IV V 1 4 2 0 2 1	

(10 Marks)

- 10 a. Discuss any three priority rules of processing n jobs through one machine. (06 Marks)
 - b. Four jobs 1, 2, 3 and 4 are to be processed on each of the four machines. A, B, C and D in the order ABCD. The processing times in minutes are given in the table below. Find, for no passing the minimum elapsed time and idle time for each machine.

A		b	Mac!	0	
CO	7	A	В	C	D
	1	58	14	14.	48
Jobs	2	30	10	18	32
	3	28	12	16	44
	4	64	16	12	42

CMRIT LIBRARI BANGALORE - 560 037

(10 Marks)