CMR INSTITUTE OF TECHNOLOGY

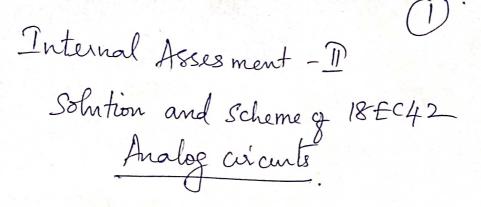
8.

USN

[10]

CO2

L3


Internal Assesment Test - II

Sub:	Analog Circuits	Analog Circuits							le:	18EC42	
Dat	te: 22/06/2021	Duration:	90 mins	Max Marks:	50	Sem:	4 th	Branch:		ECE	
		A	nswer Any	FIVE FULL Q	uestion	S					
								Marks	OBE CO RBT		
1.	Draw and explain the Derive the expression for				ommon	source	ampli	fier.	[10]	CO2	L3
C	With the help of neat circuit diagram and small signal equivalent model explain the working of FET based RC Phase shift Oscillator. Also explain how three RC pair can be used to in the feedback to achieve 180 degree phase shift.								CO3	L3	
3.	a) With a neat circuit Rin, Avo, Av for comm					expression	ons fo	r	[06]	CO2	L3
a	b) Find the midband gain signal source having 4.7M Ω , RD = RL = 15 k	an internal r	esistance	Rsig = $100 \text{ k}\Omega$	2. The a	amplifier	has			CO2	L3
4.	Explain the internal capacitances of a MOSFET. For the n-channel MOSFET in saturation with tox=10nm, L=1μm, W=10μm, LOV=0.05 μm, Csbo = Cdbo = 10fF, VO=0.6V, VSB=1V and VDS=2V. Given dielectric used is SiO2. Calculate i)COX ii)COV iii)Cgs iv)Cgd v)Csb vi)Cdb							[10]	CO2	L3	
	Show how noise reduction and bandwidth increment occurs with the application of negative feedback.							[10]	CO2	L3	
6.	a) Draw the four basic negative-feedback topologies.								[04]	CO2	L2
	b) Draw and explain Series-Series feedback amplifier ideal structure. Also, derive Rif and Rof.						l [06]	CO2	L2		
r	With a neat diagram ex esonance action with eq Cs=0.065pF, Cp=1pF, C	uivalent circu	its and rel	evant expression	ns. A cr	ystal has	•			CO3	L3

Cs=0.065pF, Cp=1pF. Calculate its series and parallel resonant frequency.

Av, Ro and Gv for a source follower.

With a neat circuit diagram and ac equivalent circuit derive the expressions for Rin, Avo,

1. Frequency presponse of Common source amphifier

Graph of explanation -> 5m.]

Expression for lower cutoff freg.

Derivation + explanation -> 5m.

FET based Rc phase Shift Osallaton (10M), cucuit diagram (2M), equivalent model (2M) explanation (2M)

3 RC pari in the feed back providing 180° phase shift (4m).

(3) Rin = Ri = RG.

Avo = -gm RD 1+gm Rs= 2M.

Av = -gm(Ro)/RL $V_i = -gm(Ro)/RL$ 1+gm Rs.

Curcuit diagram and equal 3M.

(3) b). $R_{sg} = look$. $R_{G} = 4.7m$. $R_{D} = R_{L} = 15k$ $g_{m} = l_{m} + l_{N} + l_{o} = 150k$. $G_{gs} = l_{p} = 15k$ $A_{m} = \frac{-R_{G}}{R_{G} + R_{sig}} = \frac{-7 \nu l_{N}}{R_{G} + R_{sig}} = \frac{-7 \nu l_{N}}{R_{G} + R_{sig}} = \frac{1}{2\pi Cin(R_{sg} + l_{R})} = \frac{382k + 2}{4m}.$

· Internal Capacitance of MOSFET.

Cgs, Cgd, Cgb, Csb, (db-). All capacitars
explanation with diagram (5m)

Cox = 3.45 F / µm², Cov = 1.72 f Gs = 24.7 f Gd = 1.72 f Cgb = 4.1 f (Sm)

(5) Nosé reduction (Block diagram) - 2M.

 $V_0 = V_S \frac{A_1A_2}{1+A_1A_2B} + V_n \frac{A_1}{1+A_1A_2B}$ explanation $S = \frac{V_S}{N} A_2$.

Bw extension $Af(S) = \frac{Am}{1 + AmB} = \frac{Amf}{1 + Amf}$

1+ S WH(1+AmB), 1+ S WHJ.

(6) (a) Four basic topology (block dragsam) 4M.

(b) Series - Series feed back explanation and gam(2m) } 6m.
Rif (2m)
Rof (2m)

(7) - Crystal Oscillator - 8 troncture, equivalent cucut (2 m). Explanation-Series and parallel Resonance action of expressions (3 M) Numerical problem - SyM.

Rin = Ra.

 $AV = \frac{RL/100}{RL/100 + \frac{1}{9}m} \approx \frac{RL}{Rc + \frac{1}{9}m}$ when so DRC

 $Av_0 = \frac{v_0}{v_0 + g_m} \approx 1.$ $Gv = \frac{Ra}{Ra + Rsig} \frac{Rull v_0}{(Rull v_0) + g_m}$

Rout = Im/ro & gm

Cucuit diagrain and equivalent 3M. Cucut 10M.