
USN : _____________________________

CMR Institute of Technology, Bangalore

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

III - INTERNAL ASSESSMENT

Semester: 4-CBCS 2018 Date: 29 Jul 2021

Subject: OPERATING SYSTEMS (18CS43)

Faculty: Dr Prem Kumar Ramesh

Time: 01:00 PM - 02:30 PM Max Marks: 50

Instructions to Students:

Question 4 is compulsory & Answer Any Four Complete Questions from the remaining.

ANSWER_ANY 5 Question(s)

Marks CO BT/CL

1. Define Deadlock. Write Short notes on the 4 necessary conditions that arise deadlocks

 A process requests resources, if the resources are not available at that time, the

process enters a waiting state. Sometimes, a waiting process is never again able to

change state, because the resources it has requested are held by other waiting

processes. This situation is called a Deadlock. [2mrks]

To illustrate a deadlocked state, consider a system with three CD RW drives. [2 mrks]

Suppose each of three processes holds one of these CD RW drives. If each

process now requests another drive, the three processes will be in a deadlocked state.

Each is waiting for the event "CD RW is released," which can be caused only by

one of the other waiting processes. This example illustrates a deadlock involving the

same resource type.

Deadlocks may also involve different resource types. For example, consider a system

with one printer and one DVD drive. Suppose that process Pi is holding the DVD and

process Pj is holding the printer. If Pi requests the printer and Pj requests the DVD drive,

a deadlock occurs.

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

[6mrks]

1. Mutual exclusion: At least one resource must be held in a non-sharable mode,

that is, only one process at a time can use the resource. If another process

requests that resource, the requesting process must be delayed until the resource

has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task.

4. Circular wait: A set {P0, Pl, ... , Pn} of waiting processes must exist such that Po

is waiting for a resource held by P1, P1 is waiting for a resource held by P2, ... ,

Pn-1 is waiting for a resource held by Pn and Pn is waiting for a resource held by Po.

2. Assume that there are 5 processes P0 through P5 and 4 types of resources. At time T0 we have

the following state.

Process Allocation MAX Available

P0 A B C D A B C D A B C D

P1 0 0 1 2 0 0 1 2 1 5 2 0

P2 1 0 0 0 1 7 5 0

P3 1 3 5 4 2 3 5 6

P4 0 6 3 2 0 6 5 2

P5 0 0 1 4 0 6 5 6

Apply Bankers algorithm to answer the following.

i) What is the content of need matrix.

ii) Is the system in a safe state.

iii) If a request from a process P1(0,4,2,0) arrives can it be granted.

[10.0] 1 [3]

3a. Describe with an example the internal and external fragmentation problem encountered in

contiguous memory allocation.[5.0] 1 [2]

Two types of memory fragmentation:

1. Internal fragmentation

2. External fragmentation

1. Internal Fragmentation

 The general approach is to break the physical-memory into fixed-sized blocks

and allocate memory in units based on block size.

 The allocated-memory to a process may be slightly larger than the requested-

memory.

 The difference between requested-memory and allocated-memory is called

internal fragmentation i.e. Unused memory that is internal to a partition.

2. External Fragmentation

 External fragmentation occurs when there is enough total memory-space to

satisfy a request but the available-spaces are not contiguous. (i.e. storage is

fragmented into a large number of small holes).

 Both the first-fit and best-fit strategies for memory-allocation suffer from

external fragmentation.

 Statistical analysis of first-fit reveals that given N allocated blocks, another 0.5

N blocks will be lost to fragmentation. This property is known as the 50-percent

rule.

Two solutions to external fragmentation:

 Compaction: The goal is to shuffle the memory-contents to place all free

memory together in one large hole. Compaction is possible only if relocation is

dynamic and done at execution-time

 Permit the logical-address space of the processes to be non-contiguous. This

allows a process to be allocated physical-memory wherever such memory is

available. Two techniques achieve this solution: 1) Paging and 2) Segmentation.

Paging

 Paging is a memory-management scheme.

 This permits the physical-address space of a process to be non-contiguous.

 This also solves the considerable problem of fitting memory-chunks of

varying sizes onto the backing-store.

 Traditionally: Support for paging has been handled by hardware.

 Recent designs: The hardware & OS are closely integrated.

Basic Method of Paging

 The basic method for implementing paging involves breaking physical memory

into fixed-sized blocks called frames and breaking logical memory into blocks

of the same size called pages.

 When a process is to be executed, its pages are loaded into any available

memory frames from the backing store.

The backing store is divided into fixed-sized blocks that are of the same size as the

memory frames

Segmentation

Basic Method of Segmentation

 This is a memory-management scheme that supports user-view of memory

(Figure 1).

 A logical-address space is a collection of segments.

 Each segment has a name and a length.

 The addresses specify both segment-name and offset within the segment.

 Normally, the user-program is compiled, and the compiler automatically

constructs segments reflecting the input program.

 For ex: The code, Global variables, The heap, from which memory is

allocated, The stacks used by each thread, The standard C library

3b. Describe the steps involved in handling a page fault.

[5.0] 1 [2]

If a page is needed that was not originally loaded up, then a page fault trap is

generated.

Steps in Handling a Page Fault

1. The memory address requested is first checked, to make sure it was a valid

memory request.

2. If the reference is to an invalid page, the process is terminated.

Otherwise, if the page is not present in memory, it must be paged in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk.

5. After the page is loaded to memory, the process's page table is updated with

the new frame number, and the invalid bit is changed to indicate that this is

now a valid page reference.

6. The instruction that caused the page fault must now be restarted from the

beginning.

4a. Consider the following page reference string.

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1.

How many page faults would occur for LRU, FIFO and optimal page replacement algorithm

assuming 3 frames.

FIFO

Page Hit= 5, Page Miss= 15

Page Hit= 11, Page Miss= 09

Page Hit=8 , Page Miss= 12

 [6.0] 1 [3]

4b. Given the memory partitions of 100k,500k,200k,300k, 600k apply first fit , best fit and worst

fit to place 212k, 417k,112k and 426k

[4.0] 1 [3]

5a. What are TLB? With a neat diagram explain TLB in detail with a simple paging system .

[5.0] 1 [2]

Translation Look aside Buffer

 A special, small, fast lookup hardware cache, called a translation look-

aside buffer (TLB).

 Each entry in the TLB consists of two parts: a key (or tag) and a value.

 When the associative memory is presented with an item, the item is compared

with all keys simultaneously. If the item is found, the corresponding value field

is returned. The search is fast; the hardware, however, is expensive. Typically,

the number of entries in a TLB is small, often numbering between 64 and 1,024.

 The TLB contains only a few of the page-table entries.

Working:

 When a logical-address is generated by the CPU, its page-number is

presented to the TLB.

 If the page-number is found (TLB hit), its frame-number is immediately

available and used to access memory

 If page-number is not in TLB (TLB miss), a memory-reference to page table

must be made. The obtained frame-number can be used to access memory

(Figure 1)

Figure 1: Paging hardware with TLB

 In addition, we add the page-number and frame-number to the TLB, so that

they will be found quickly on the next reference.

 If the TLB is already full of entries, the OS must select one for replacement.

 Percentage of times that a particular page-number is found in the TLB is called

hit ratio.

Advantage: Search operation is fast.

Disadvantage: Hardware is expensive.

 Some TLBs have wired down entries that can't be removed.

 Some TLBs store ASID (address-space identifier) in each entry of the TLB that

uniquely identify each process and provide address space protection for that

process.

5b. Explain the structure of page table.

[5.0] 1 [2]

The most common techniques for structuring the page table:

1. Hierarchical Paging

2. Hashed Page-tables

3. Inverted Page-tables

1. Hierarchical Paging

 Problem: Most computers support a large logical-address space (232 to 264).

In these systems, the page-table itself becomes excessively large.

 Solution: Divide the page-table into smaller pieces.

Two Level Paging Algorithm:

 The page-table itself is also paged.

 This is also known as a forward-mapped page-table because address

translation works from the outer page-table inwards.

2. Hashed Page Tables

 This approach is used for handling address spaces larger than 32 bits.

 The hash-value is the virtual page-number.

 Each entry in the hash-table contains a linked-list of elements that hash to

the same location (to handle collisions).

 Each element consists of 3 fields:

1. Virtual page-number

2. Value of the mapped page-frame and

3. Pointer to the next element in the linked-list.

The algorithm works as follows:

 The virtual page-number is hashed into the hash-table.

 The virtual page-number is compared with the first element in the linked-list.

 If there is a match, the corresponding page-frame (field 2) is used to form

the desired physical-address.

 If there is no match, subsequent entries in the linked-list are searched for a

matching virtual page-number.

3. Inverted Page Tables

 Has one entry for each real page of memory.

 Each entry consists of virtual-address of the page stored in that real

memory-location and information about the process that owns the page.

 Each virtual-address consists of a triplet <process-id, page-number, offset>.

 Each inverted page-table entry is a pair <process-id, page-number>

The algorithm works as follows:

1. When a memory-reference occurs, part of the virtual-address, consisting of

<process-id, page-number>, is presented to the memory subsystem.

2. The inverted page-table is then searched for a match.

3. If a match is found, at entry i-then the physical-address <i, offset> is generated.

If no match is found, then an illegal address access has been attempted

6. Discuss the various approaches used for deadlock recovery

[10.0] 1 [2]

RECOVERY FROM DEADLOCK

The system recovers from the deadlock automatically. There are two options for

breaking a deadlock one is simply to abort one or more processes to break the circular

wait. The other is to preempt some resources from one or more of the deadlocked

processes.

Process Termination
To eliminate deadlocks by aborting a process, use one of two methods. In both methods,

the system reclaims all resources allocated to the terminated processes.

1. Abort all deadlocked processes: This method clearly will break the deadlock

cycle, but at great expense; the deadlocked processes may have computed for a

long time, and the results of these partial computations must be discarded and

probably will have to be recomputed later.

2. Abort one process at a time until the deadlock cycle is eliminated: This

method incurs considerable overhead, since after each process is aborted, a

deadlock-detection algorithm must be invoked to determine whether any

processes are still deadlocked.

If the partial termination method is used, then we must determine which deadlocked

process (or processes) should be terminated. Many factors may affect which process is

chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process will

compute before completing its designated task

3. How many and what types of resources the process has used.

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated?

6. Whether the process is interactive or batch

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some

resources from processes and give these resources to other processes until the deadlock

cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be preempted?

As in process termination, we must determine the order of preemption to

minimize cost. Cost factors may include such parameters as the number of

resources a deadlocked process is holding and the amount of time the process

has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done with

that process? Clearly, it cannot continue with its normal execution; it is missing

some needed resource. We must roll back the process to some safe state and

restart it from that state. Since it is difficult to determine what a safe state is, the

simplest solution is a total rollback: abort the process and then restart it.

3. Starvation. How do we ensure that starvation will not occur? That is, how

can we guarantee that resources will not always be preempted from the same

process?

7. Consider the following segment table

SEGMENT BASE LENGTH

0 219 600

1 2300 14

2

90 100

3 1327 580

4 1952 96

What are the physical addresses for the following logical address.

a)0,430 b)1,10 c) 2,500 d) 3,400 e) 4,112

[10.0] 1 [3]

	Paging
	Segmentation
	Steps in Handling a Page Fault
	Translation Look aside Buffer
	1. Hierarchical Paging
	2. Hashed Page Tables
	3. Inverted Page Tables

	RECOVERY FROM DEADLOCK
	Process Termination
	Resource Preemption

