	. —	 	 	— —	
USN					

Solution of Internal Assessment Test III – JULY. 2021

Sub:	Design & Anal	ysis of Algori	thms			Sub Code:	18CS42	Bra	nch:	CSE		
Date:	30/07/2021	Duration:	60 min's	Max Marks:	50	Sem/Sec:	4/A,I	,B,C & D		D		BE
				I			I		MA	RKS	СО	RBT
1a	0/1 Knapsack c a) Dynamic pro b) Greedy appr c)Brute-force e d)Backtracking	gramming oach	be solved or	ne of the follow	ing st	rategies:				1	CO3	L2
1b	Bellman-Ford's programming balt needs the coll uses recurs d)It does not us	pecause: distance to t distance to n ion	he same ver	tex multiple tir	nes		dynamic			1	CO3	L2
1c	An algorithm programming a)It does not ib)It involves r	to find the fa technique b nvolve recur ecursion involve repe	ecause: sion ated recursi	number will NC			/namic			1	CO3	L2
1d	If dynamic prog a) O(2^n) b)O(n) c)O(n^2) d)O(n^3)	gramming is	not used, th	en the best cas	e con	nplexity of 0,	/1 Knapsack is	:		1	CO3	L3
1e	Sub-tours must problem becau a)All sub-tours b)Some sub-tou c)Travelling Sal d)Travelling Sal	se: cannot be fo urs are not p esman probl	ound ossible to co em consider	over rs only some su	b-tou	ırs, not all		an		1	CO3	L2
1f	Consider a travas shown below A B C D A 0 10 15 2 B 10 0 35 2 C 15 35 0 3 D 20 25 30 What is the cosa)65 b)80 c)70 d)35	v: 0 25 30 0	·					are		1	CO3	L3

1g	What will be the complexity of Floyd's algorithm if the dijkstra's algorithm is performed again repeatedly for each vertex? a) O(V4) b)O(V) c)O(VE) d)O(VE+log V) What happens in Dkij when the value of k is 1 in Floyd's algorithm.	1	CO3	L2
1h	a)0 intermediate vertex b)N intermediate vertex c)N-1 intermediate vertex d)1 intermediate vertex	1	CO3	L2
1i	Choose the appropriate problem for the multistage graph from the list below. a)Travelling salesman b)0/1 Knapsack c)Resource allocation d)Assignment problem	1	CO3	L3
1j	How many solutions are there for 8 queens on an 8 x 8 board? a) 64 b) 91 c) 92 d) 93	1	CO3	L3
2a	11. True or False The worst case complexity of backtracking is the same as exhaustive search a) True b)False	1	CO2	L2
2b	Which one of the following is a correct option that provides an optimal solution for 4-queens problem? a) (3,1,4,2) b) (2,3,1,4) c) (4,3,2,1) d) (4,2,3,1)	1	CO3	L3
2c	The complexity of a recursive solution of the subset sum problem is: a) exponential b) linear c) logarithmic d) quadratic	1	CO2	L2
2d	One of the following squares need not be checked for obstruction, when we are looking to place a queen in the 3rd row, 2nd column of the 4-Queens problem: (1, 1) (2, 1) (1, 4) (4, 3)	1	CO3	L3

	The best	-case	com	plexity	of War	hall's algorithm to find Transitive Closure of a graph is:			
2e	O(n3) Theta(n3) Omega(i	า3)					1	CO2	L3
2f	Explanate Answer: Though F(8) and programe time cor	r the on-1) + use on ity as tion vertical recurrence re	definite F(0) If dyners come If dyners come	and amic p pared t ustificat is used wever, be used ince it i s in the	rogram to a rec ation I, it is no F is call d to imp is usefu	ning to implement the function F reduce the time rsive implementation? Explain.		CO3	L4
3a	dynamic impleme Probler Explana Answer :	progentatin sol	ramn on. ving	ning is using	useful i	r shortest paths on the graph below and explain how reducing the time taken, in comparison to a recursive n-Ford's algorithm3M	5	CO3	L3

