| | . — |
 |
 | — — |
 | |-----|-----|------|------|-----|------| | USN | | | | | | ## Solution of Internal Assessment Test III – JULY. 2021 | Sub: | Design & Anal | ysis of Algori | thms | | | Sub Code: | 18CS42 | Bra | nch: | CSE | | | |-------|--|---|--------------------------------------|-------------------------|--------|----------------|----------------|----------|------|-----|-----|-----| | Date: | 30/07/2021 | Duration: | 60 min's | Max Marks: | 50 | Sem/Sec: | 4/A,I | ,B,C & D | | D | | BE | | | | | | I | | | I | | MA | RKS | СО | RBT | | 1a | 0/1 Knapsack c
a) Dynamic pro
b) Greedy appr
c)Brute-force e
d)Backtracking | gramming
oach | be solved or | ne of the follow | ing st | rategies: | | | | 1 | CO3 | L2 | | 1b | Bellman-Ford's programming balt needs the coll uses recurs d)It does not us | pecause:
distance to t
distance to n
ion | he same ver | tex multiple tir | nes | | dynamic | | | 1 | CO3 | L2 | | 1c | An algorithm programming a)It does not ib)It involves r | to find the fa
technique b
nvolve recur
ecursion
involve repe | ecause:
sion
ated recursi | number will NC | | | /namic | | | 1 | CO3 | L2 | | 1d | If dynamic prog
a) O(2^n)
b)O(n)
c)O(n^2)
d)O(n^3) | gramming is | not used, th | en the best cas | e con | nplexity of 0, | /1 Knapsack is | : | | 1 | CO3 | L3 | | 1e | Sub-tours must
problem becau
a)All sub-tours
b)Some sub-tou
c)Travelling Sal
d)Travelling Sal | se:
cannot be fo
urs are not p
esman probl | ound
ossible to co
em consider | over
rs only some su | b-tou | ırs, not all | | an | | 1 | CO3 | L2 | | 1f | Consider a travas shown below A B C D A 0 10 15 2 B 10 0 35 2 C 15 35 0 3 D 20 25 30 What is the cosa)65 b)80 c)70 d)35 | v:
0
25
30
0 | · | | | | | are | | 1 | CO3 | L3 | | 1g | What will be the complexity of Floyd's algorithm if the dijkstra's algorithm is performed again repeatedly for each vertex? a) O(V4) b)O(V) c)O(VE) d)O(VE+log V) What happens in Dkij when the value of k is 1 in Floyd's algorithm. | 1 | CO3 | L2 | |----|---|---|-----|----| | 1h | a)0 intermediate vertex b)N intermediate vertex c)N-1 intermediate vertex d)1 intermediate vertex | 1 | CO3 | L2 | | 1i | Choose the appropriate problem for the multistage graph from the list below. a)Travelling salesman b)0/1 Knapsack c)Resource allocation d)Assignment problem | 1 | CO3 | L3 | | 1j | How many solutions are there for 8 queens on an 8 x 8 board? a) 64 b) 91 c) 92 d) 93 | 1 | CO3 | L3 | | 2a | 11. True or False The worst case complexity of backtracking is the same as exhaustive search a) True b)False | 1 | CO2 | L2 | | 2b | Which one of the following is a correct option that provides an optimal solution for 4-queens problem? a) (3,1,4,2) b) (2,3,1,4) c) (4,3,2,1) d) (4,2,3,1) | 1 | CO3 | L3 | | 2c | The complexity of a recursive solution of the subset sum problem is: a) exponential b) linear c) logarithmic d) quadratic | 1 | CO2 | L2 | | 2d | One of the following squares need not be checked for obstruction, when we are looking to place a queen in the 3rd row, 2nd column of the 4-Queens problem: (1, 1) (2, 1) (1, 4) (4, 3) | 1 | CO3 | L3 | | | The best | -case | com | plexity | of War | hall's algorithm to find Transitive Closure of a graph is: | | | | |----|---|--|---|--|--|--|---|-----|----| | 2e | O(n3)
Theta(n3)
Omega(i | า3) | | | | | 1 | CO2 | L3 | | 2f | Explanate Answer: Though F(8) and programe time cor | r the on-1) + use on ity as tion vertical recurrence re | definite F(0) If dyners come | and amic p pared t ustificat is used wever, be used ince it i s in the | rogram to a rec ation I, it is no F is call d to imp is usefu | ning to implement the function F reduce the time rsive implementation? Explain. | | CO3 | L4 | | 3a | dynamic
impleme
Probler
Explana
Answer : | progentatin sol | ramn
on.
ving | ning is using | useful i | r shortest paths on the graph below and explain how reducing the time taken, in comparison to a recursive n-Ford's algorithm3M | 5 | CO3 | L3 |