7/28/2021 181S61

USN :
CMR Institute of Technology, Bangalore
DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING
* CMR INSTITUTE OF TECHNOLOGY, BENGALURV, III B INTERNAL ASSESSMENT

Semester: 6-CBCS 2018 Date: 1 Aug 2021

Subject: FILE STRUCTURES (18IS61) Time: 09:00 AM - 10:30 AM

Faculty: Mr Prasad B S Max Marks: 50
Instructions to Studemis :
Answer any 5 full questions , each carries 10 marks.

Answer any b question(s)

Q.No Marks CO PO BT/CL
What a.re the properties of B-Tree? Explain deletion, merging and redistribution of elements on B-Tree 10 o3 PO1,PO2,PO3,PO4 POS L2
with suitable example

: For a Btree of order m, Btree has the following properties.
1. Every page has a maximum of m children.
2. Every page, except for the root and the leaves, has a minimum of m/2 children
3. The root has a minimum of 2 children (unless it is a leaf).
4. All of the leaves are on the same level
5. The leaf level forms a complete, ordered index of the associated data file.
The rules for deleting a key k from a node n in a B-tree are as follows:
1. If n has more than the minimum number of keys and the k is not the
largest in n, simply delete k from n. o
2. If n has more than the minimum number of keys and the k is the
largest in n, delete k and modify the higher level indexes to reflect the
new largest key in 7.
3. If n has exactly the minimum number of keys and one of the siblings
of »n has few enough keys, merge n 'with its sibling and delete a key
from the parent node.
4, If n has exactly the minimum number of keys and one of the siblings
of n has extra keys, redistribute by moving some keys from a sibling to
n, and modify the higher level indexes to reflect the new largest keys in
the affected nodes.
PS: Add example for deletion, merging and redistribution
What is indexed sequential access? Explain the block splitting and merging due to insertion and 10 C02,C03 PO1,PO2,PO3,PO4PO5 L2

deletion in sequence set.

: In indexed and tree structure based access user had to choose between viewing a file
from an indexed point of view or from a sequential point of view. In Indexed sequential
access we are looking for a single organizational method that provides both of these views
simultaneously.
Sequence set:
« A sequence set is a set of records in physical key order which is such that it stays
ordered as records are added and deleted.

« Since sorting and resorting the entire sequence set as records are added and deleted is
expensive, we look at other strategies. In particular, we look at a way to localize the
changes.

« The idea is to use blocks that can be read into memory and rearranged there quickly.
Like in B-Trees, blocks can be split, merged or their records re-distributed as
necessary.

Block 1 4 ADAMS . . . BAIRD .. . BIXBY .. . BOONE .

Block2 — ®| BYNUM . .. CARSON ... COLE . .. DAVIS . . .
Block 3 —3| DENVER . . . ELLIS . . .
(a)
Block 1 ADAMS . . . BAIRD . . . BIXBY . . . BOONE . . .
Block 2 P syNUM ... CARSON . .. CARTER . . .
Block 3 »] DENVER . .. ELLIS . . .
Block 4 COLE . . . DAVIS . . .
®)
Block 1 ADAMS . . . BAIRD . . . BIXBY . . . BOONE . . .
Block 2 P! BYNUM . .. CARSON . . . CARTER . . .
Block 3 _j+— Available
for reuse
Block 4 ! COLE...DENVER ... ELLIS . ..

{c)

Figure 10.1 Block splitting and merging due to insertions and deletions in
the sequence set, (a) Initial biocked sequence set. (b} Sequence set after
insertion of CARTER record—block 2 splits, and the contents are divided
between blocks 2 and 4.{c) Sequence set after deletion of DAVIS record-—
block 4 is less than half full, so it is concatenated with block 3.

Suppose that 1000 addresses are allocated to hold 600 records in a randomly hashed file and that each
address can hold one record. Compute the following values:

L The packing density

I The expected number of addresses with no records assigned to them.

11, The expected number of addresses with exactly one record assigned. 10 CO3
Iv. The expected number of addresses with one record or one or more synonyms

V. The expected number of overflow records assuming that only one record can be assigned to

each home addresses
VL Percentage of overflow records

PO1,P0O2,PO3,P0O4,PO5

L3

e 2

M- 06’y e - = 0-019 x100

i =SEt

) = ot 'x 6 = oonz x 060
| —TY P
PSY=" ot ce = O,

=1

Addsmsts . one OF wose &
= ¢+ 9t+2+t0= |9
e

V)| e onpecked number o) ovelllow veoves cosundp frotouly
one el Cam bo amtaed o ecadh howe oddwens
U

() + (qw2) + (2xz) —~x(ort)

- Yaz_ ovu[\)lm

) ,Ma\{x_%_ﬂ!&w”"”
q2 ¥ m;_:_aL‘JQL

600

A ; 4

With a suitable diagram, explain the internal structure of index set blocks.

To place the following Set of separators into an index block:
As, Ba, Bro, C, Ch, Cra, Pele, Edi, Err, Fa, Fe
Merge these separators and build an index for them, as shown in Fig.

AsBaBroéChCnDeleEdiEnFaFle 900204 0708 1013 172023 25

| }4———Concatenated——>i - _ }ﬂ— Index to separators—bi |

separators

The index set block needs some way to store references to its children, to the blocks
descending from it in the next lower level of the tree. Assuming that the references are made
in terms of a relative block number (RBN). If there are N separators within a block, the block
has N+ 1 children and therefore needs Space to store N+ 1 RBNSs in addition to the separators
and the index to the separators.

One possible approach is illustrated in Fig below. In addition to the vector of separators, the
index to these separators, and the list of associated block numbers, this block structure
includes:

Separator count: we need this to help us find the middle element in the index to the
separators so we can begin our binary search.

Total length of separators: the list of merged separators varies in length from block to
block. Since the index to the separators begins at the end of this variable-length list, we need
to know how long the list is so we can find the beginning of our index.

Separator count
I‘rTotaI length of separators

11128 AsBaBroCChCraDeleEdiErrFaFle | 00 02 04 G7 0B 10 13 17 20 23 25 { B0O B0} B0O2 B03 B04 B0O5 BO6 BO7 BOS B0Y B10 BIl

}4— Separators ——’F—- Index to separators—>|<————Relative block numbers———hl

Figure 10.12 Structure of an index set biock.

Define collision. Explain the different collision resolution techniques used in hashing.

Collision: An attempt to store a record at an address which does not have sufficient room

ie already occupied by another record which is a synonym. A collision occurs when two

record keys has to the same address.

Progressive overflow: If a key, k1, hashes into the same address, al, as another key,

k2, then look for the first available address, a2, following al and place k1 in a2. If the end

of the address space is reached, then wrap around it. When searching for a key that is not

in, if the address space is not full, then an empty address will be reached or the search will

come back to where it began.

a. Progressive Overflow causes extra searches and thus extra disk accesses. If there are
many collisions, then many records will be far from “home”. Buckets: Buckets allows

0

.

5 Novak. . .)

6 Rosen . . . |j¢«— York’s home
address (busy)

7 Jasper. . . [«—2nd try (busy) .

8 Moreley . . . ‘ [+—3rd try (busy)

9 . |+—4th try (open)
York’s actual
address

to store more than one record in a single hash address i.e. storing More than One
Record per address. A bucket describes a block of records sharing the same address
that is retrieved in one disk access. When a record is to be stored or retrieved, its
home bucket address is determined by hashing.

10

10

CO3

CO3

PO1,PO2,PO3,P04,PO5

PO1,PO2,PO3,P0O4,PO5

L2

L2

Effect of bucket on collision:

To compute how densely packed a file is, we need to consider

1) the number of addresses, N, (buckets)

2) the number of records we can put at each address, b, (bucket size) and
3) the number of records, r.

Then,

Packing Density = r/bN

Though the packing density does not change when halving the number of addresses
and doubling the size of the buckets, the expected number of overflows decreases
dramatically.
Disadvantage: When a bucket is filled, we still have to worry about the record
overflow problem, but this occurs much less often than when each address can hold
only one record.

. Double Hashing:
Double hashing is similar to progressive overflow. The second hash value is used as a
stepping distance for the probing. The second hash value should never be one. The
second hash value should be relatively prime to the size of the table. \

If there is collision at the hash address produced by hi(k) = Say ‘X', then the key is
dropped

to second hash function to produce address ‘C’. The new record is stored at the
address '*X+C’. A collision resolution scheme which applies a second hash function to
keys which collide, to determine a probing distance ‘C'.

h1(k)= X (collision at X)

h2(k)= C

X+C = home address of k
The use of double hashing will reduce the average number of probes required to find a
record.

. Chained Progressive Overflow: Chained progressive overflow forms a linked list, or
chain, of synonyms. Each home address contains a number indicating the location of
the next record with the same home address. The next record in turn contains a
pointer to the other record with the same home address. Assume the following has
address generation:

Key Home
address
Adams 20
Bates 21
Cole 20
Deans 21
Evans 24
Flint 20

The records with same home address are linked as shown in the figure below: In the
figure below Adams contain the pointer to Cole which is synonym. Then Bates contain
pointer to Dean which are again synonym.

Address Key Next
record

20 Adams 22

21 Bates 23

22 Cole 25

23 Deans -1

24 Evans -1

25 Flint -1

26

d. Chaining with a separate overflow area:

One way to keep overflow records from occupying home addresses where they should
not be is to move them all to a separate overflow area. The set of home addresses is
called prime data area, and the set of overflow addresses is called the overflow area.

Whenever a new record is added if its home address is empty, it is stored in primary
storage area. Otherwise it is moved to overflow area, where it is added to a linked list
that starts at home address.

Home Primary Overflow
address data area area
20 Adams . . . 0 e 0 Cole . . . - 2
21 Bates]-1-———’ 1 Dean . . . -1
22 . 2 Flint ., . . -1 %
23 3
24 Evans . . . -1

Scatter tables: If all records are moved into a separate "overflow" area, with only
links being left in the hash table, the result is a scatter table. In scatter table records are
not stored at the hash address. Only pointer to the record is stored at hash address.

Scatter tables are similar to index but they are searched by hashing rather than some other
method which is used in case of indexing. Main advantage of scatter tables is they support
use of variable length records.

Adams. . .| {—f Cole . .. |?d=—f Flint . . .|=1

Bates . . . ‘P Dean .

Evans. =1

Explain and illustrate the working of Simple Prefix B+ Tree with suitable example. What are the issue in 10
maintenance of Simple prefix B+ Tree.

B-tree index set taken together with sequence set forms a file structure called a simple prefix

B+ tree. The modifier simple prefix indicates that the index set contains shortest separators or

prefixes of the keys rather than copies of the actual key.
Maintenance:

1. Changes Localized to Single Blocks in the Sequence Set

Additions, deletions, and updates in the sequence set which affect only a single block do not
affect the index set.

,lE

N

1 BO FOLKS

/ A\‘

ADAMS-BERNE HOLEN—CAGE> CAMP-DUTTON) ERVIN-EVANS FABER-FOLK) FROST-GADDIS

. 7 4 7 7/
1 2 3 4 5 6

Figure 10.8 The deletion of the EMBRY and FOLKS records from the sequence set leaves
the index set unchanged. . _

2. Changes involving multiple blocks in the sequence set

When addition to the sequence set results in split in the sequence set, deletion in sequence
set which results in merger, or changes in sequence set resulting in redistribution requires
involvement of more than one block set and corresponding changes in the index set as well.

F FOLKS
[1]

AT

FROST-GADDIS

AYERS-BERNE Y] BOLEN-CAGE] CAMP-DUTTON) ERVIN-EVANS FABER-FOLK

ADAMS-AVERY

/ / / 7/ 7 7
1 il 2 3 4

6

e

Figure 10.9 An insertion into block 1 causes a split and the consequent addition of
biack 7.The addition of a black in the sequence set requires a new separator in the index
set. Insertion of the AY separator into the node containing BO and CAM causes a node
snlit in the index set B-tree and consequent promotion of BO to the root.

/

.
AY BO I F | FOLKS I
A /\ - \ By \
ADAMS-AVERY h\'ER&BE;) BOLEN-DUTTON ERVIN-EVANS FABER-FOLK FROST-GADDIS
~7 7 '
1 7 2 4 5 6

E;gu!:e;{).w A deletion from. block 2 causes underflow and the consequent merging of
O":; 1'5 and 3. After the merging, block 3 is no longer needed and can be placed on an
avall list. Consequently, the separator CAM is no longer needed. Removing CAM from its

node in the i i i ; P
e e index set forces a merging of index set nodes, bringing BO back down from

Write a note on the following:
7 1. Worst Case Search Depth of B -Tree 10
2. B* Trees

CO3

C0O2,CO3

PO1,PO2,PO3,P04,PO5

PO1,P0O2,PO4,PO5

L2

L2

For a B-tree of order m, the minimum number of descendants from
the root page is 2, so the second level of the tree contains only 2 pages.

Each of these pages, in turn, has at least [m/2 | descendants. The third level,
then, contains

2 me/21

pages. Since each of these pages, once again, has a minimum of [mi2]
descendants, the general pattern of the relation between depth and the
minimum number of descendants takes the following form:

Level Minimum number of descendants
1 (root)- | 2 |

2 2x[m/2]

3 2x[m21x[m2lor 2 x[mi2 b

4 N 2x[m/2 P v

d : 2 x[m2 11

So, in general, for any level d of a B-tree, the minimum number of descen-
dants extending from that level is

' z‘xl'm/ﬂd—!

For a tree with N keys in its leaves we can express the relationship
between keys and the minimum height d as

N> 2 x| m2ld-1

B* Trees

Solving for d, we arrive at the following expression:
A< + logl] (N /2).

 This expression gives us an upper bound for the depth of a B-tree with
N keys. Let’s find the upper bound for the hypothetical tree that we
describe at the start of this section: a tree of order 512 that contains
1 000 000 keys. Substituting these specific numbers into the expressmn we
find that

| d< 1+ log,se 500 000

or
d<3.37

So we can say that given 1 000 000 keys, a B-tree of order 512 has a depth

- of no more than three levels. : .

Consider a system in which we are postponmg splitting through redis-

tribution, as outlined in the preceding section. If we are considering any

page other than the root, we know that when it is finally time to split, the

_ page has at least one sibling that is also full. This opens up the possibility
of a two-to-three split rather than the usual one-to-two or two-way split.

The important aspect of this two-to-three split is that it results in

pages that are each about two-thirds full rather than just half full. This

makes it possible to define a new kind of B-tree, called a B* tree, which has

the following properties:

1. Every page has a maximum of m descendants.
2. Every page except for the root has at least| (2m - 1)/3] descendants

3. The root has at least two descendants (unless it is a leaf).

4. All the leaves appear on the same level.

1/1

