

USN

Internal Assessment Test 3 – July 2021

Sub: Software Testing Sub Code:
18CS62/17

CS62
Branch: ISE

Date: 04/08/2021 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A, B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1a) What are self check oracles? Compare self check oracles with comparison based

oracles

Definition of Self Check Oracles [2 marks]
• Software that applies a pass/fail criterion to a program execution is called

a test oracle, often shortened to oracle, The oracle can be incorporated into

the program under test, so that it checks its own work.

• Typically these self-checks are in the form of assertions, similar to assertions

used in symbolic execution and program verification, but designed to be

checked during execution.

• [4 marks] for comparison

• A test case with a comparison-based oracle relies on predicted output that

is either precomputed as part oracle of the test case specification or can be

derived in some way independent of the program under test.

• Pre-computing expected test results is reasonable for a small number of

relatively simple test cases, and is still preferable to manual inspection of

program results because the expense of producing (and debugging)

predicted results is incurred once and amortized over many executions of

the test case.

• Support for comparison-based test oracles is often included in a test harness

program or testing framework.

• A harness typically takes two inputs: (1) the input to the program under test

(or can be mechanically transformed to a well-formed input), and (2) the

predicted output.

• Frameworks for writing test cases as program code likewise provide support for

comparison-based oracles.

[2+4] CO4 L1/L2

1b) Write short notes on Capture and Replay technique used in test execution

Minimum 8 points = 4 marks

• The first time such a test case is executed, the oracle function is carried out

by a human, and the interaction sequence is captured. Provided the

execution was judged (by the human tester) to be correct, the captured log

now forms an (input, predicted output) pair for subsequent automated

retesting.

• The savings from automated retesting with a captured log depends on how

many build-and-test cycles we can continue to use it in, before it is

invalidated by some change to the program.

• Distinguishing between significant and insignificant variations from

predicted behavior, in order to prolong the effective lifetime of a captured

log, is a major challenge for capture/replay testing.

• Capturing events at a more abstract level suppresses insignificant changes.

For example, if we log only the actual pixels of windows and menus, then

changing even a typeface or background color can invalidate an entire

suite of execution logs.

• Mapping from concrete state to an abstract model of interaction sequences

[4] CO4 L2

is sometimes possible but is generally quite limited.

• A more fruitful approach is capturing input and output behavior at multiple

levels of abstraction within the implementation.

• We have noted the usefulness of a layer in which abstract input events (e.g., selection

of an object) are captured in place of concrete events (left mouse button depressed

with mouse positioned at 235, 718). Typically, there is a similar abstract layer in

graphical output, and much of the capture/replay testing can work at this level.

2a) Explain about the following basic principles of Testing Process Framework.

i) Sensitivity ii) Restriction

Minimum 10 points (5 points in each)= 5 marks

 Human developers make errors, producing faults in software. Faults

may lead to failures, but faulty software may not fail on every

execution.

 The sensitivity principle states that it is better to fail every time

than sometimes. Consider the cost of detecting and repairing a

software fault. If it is detected immediately(e.g., by an on-the-fly

syntactic check in a design editor), then the cost of correction

isverysmall,andinfactthelinebetweenfaultpreventionandfaultdetecti

onisblurred.

 If a fault is detected in inspection or unit testing, the cost is still

relatively small. If afault survives initial detection efforts at the unit

level, but triggers a failure detected in integration testing, the cost of

correction is much greater. If the first failure is detected in system or

acceptance testing, the cost is very high indeed, and the most costly

faults are those detected by customers in the field.

 A fault that triggers a failure on every execution is unlikely to

survive past unit testing. A characteristic of faults that escape

detection until much later is that they trigger failures only

rarely, or in combination with circumstances that seem

unrelated or are difficult to control.

 For example, a fault that results in a failure only for some unusual

configurations of customer equipment may be difficult and

expensive to detect.

 A fault that results in a failure randomly but very rarely - for

example, a race condition that only occasionally causes data

corruption - may likewise escape detection until the software is in

use by thousands of customers, and even then be difficult to diagnose

and correct.

 Run-time array bounds checking in many programming languages

(including Java but not Cor C++)is an example of the sensitivity

principle applied at the language level.

 A variety of tools and replacements for the standard memory

management library are available to enhance sensitivity to

memory allocation and reference faults in CandC++. The fail-fast

property of Java iterators is another application of the sensitivity

principle.

Restriction

 When there are no acceptably cheap and effective ways to check a

property, sometimes one can change the problem by checking a

different, more restrictive property or by limiting the check to a

[5] CO5 L2

smaller, more restrictive class of programs.

 Consider the problem of ensuring that each variable is initialized before

it is used, one very execution. Simple as the property is, it is not

possible for a compiler or analysis tool to precisely determine

whether it holds..

 Additional restrictions may be imposed in the form of programming

standards (e.g., restricting the use of type casts or pointer arithmetic in

C), or by tools in a

developmentenvironment.Otherformsofrestrictioncanapplytoarchitect

uralanddetaileddesign.

 Consider, for example, the problem of ensuring that a transaction

consisting of a sequence of accesses to a complex data structure by one

process appears to the outside world as if it had occurred atomically,

rather than inter leaved with transactions of other processes.

 This property is called serializability: The end result of a set of

such transactions should appear as if they were applied in some

serial order, even if they didn't.

2b) What is Scaffolding? What are the components of scaffolding? Differentiate

Generic versus Specific scaffolding

Scaffolding[1 mark]
• Code developed to facilitate testing is called scaffolding, by analogy to the

temporary structures erected around a building during construction or

maintenance.

components of scaffolding [2 mark]

• Scaffolding may include test drivers (substituting for a main or calling

program), test harnesses (substituting for parts of the deployment

environment), and stubs (substituting for functionality called or used by the

software under test), in addition to program instrumentation and support for

recording and managing test execution.

Generic versus Specific scaffolding [2 mark]

• common driver code into
reusable modules.

• hundreds or thousands of such
test-specific drivers, on the
other hand, may be
cumbersome and a disincentive
to thorough testing.

• wide of generic scaffolding

support can be used across class of

applications.

• Used only to particular
applications

• typically includes, in addition to
a standard interface for
executing a set of test cases,
basic support for logging test
execution and results.

[1+2+2] CO4 L1/L2

• generic scaffolding may suffice
for small numbers of hand-
written test cases

For large application we go for

specific scaffolding

3(a) Explain in detail about the Risk management in terms of process and quality

management. List out the various risks and their control tactics in both.

• Risk is an inevitable part of every project, and so risk planning must be a part

of every plan.

• Risks cannot be eliminated, but they can be assessed, controlled, and

monitored.

• The duration of integration, system, and acceptance test execution depends to a

large extent on the quality of software under test. Software that is sloppily

constructed or that undergoes inadequate analysis and test before

commitment to the code base will slow testing progress.

• Even if responsibility for diagnosing test failures lies with developers and

not with the testing group, a test execution session that results in many

failures and generates many failure reports is inherently more time

consuming than executing a suite of tests with few or no failures.

• This schedule vulnerability is yet another reason to emphasize earlier
activities, in particular those that provide early indications of quality
problems. Inspection of design and code (with quality team
participation) can help control this risk, and also serves to
communicate quality standards and best practices among the team.

Risk Management in the Quality Plan: Risks Generic to Process

Management

• The quality plan must identify potential risks and define appropriate control

tactics. Some risks and control tactics are generic to process management,

while others are specific to the quality process.

• Here we provide a brief overview of some risks generic to process

management. Risks specific to the quality process are summarized in the

sidebar on page 391.

[8] CO4 L2

•

Risk Management in the Quality Plan: Risks Specific to Quality

Management

• Here we provide a brief overview of some risks specific to the quality process.

Risks generic to process management are summarized in the sidebar at page

390.

3(b) Define the software testing principle: Visibility [2] CO4 L1

[2 marks]
• Visibility means the ability to measure progress or status against goals. In

software engineering, one encounters the visibility principle mainly in the

form of process visibility, and then mainly in the form of schedule

visibility: ability to judge the state of development against a project

schedule.

• Quality process visibility also applies to measuring achieved (or

predicted) quality against quality goals. The principle of visibility

involves setting goals that can be assessed as well as devising methods to

assess their realization.

• Visibility is closely related to observability, the ability to extract useful

information from a software artifact.

4 Explain about quality goals and quality team in detail.

Quality Goals [5marks]
• Process visibility requires a clear specification of goals, and in the case of

quality process visibility this includes a careful distinction among

dependability qualities. A team that does not have a clear idea of the

difference between reliability and robustness, for example, or of their relative

importance in a project, has little chance of attaining either.

• Correctness : The degree to which a system is free from [defects] in its

specification, design, and implementation.

• Robustness : The degree to which a system continues to function in the

presence of invalid inputs or stressful environmental conditions.

• Reliability : The ability of a system to perform its requested functions under

stated conditions whenever required - having a long mean time between

failures.

• Goals must be further refined into a clear and reasonable set of objectives. If an

organization claims that nothing less than 100% reliability will suffice, it is

not setting an ambitious objective.

• The relative importance of qualities and their relation to other project

objectives varies. Time-to-market may be the most important property for

a mass market product, usability may be more prominent for a Web based

application, and safety may be the overriding requirement for a life-

critical system.

• The external properties of software can ultimately be divided into

dependability (does the software do what it is intended to do?) and usefulness.

There is no precise dependability way to distinguish these, but a rule of thumb

is that when software is not dependable, we say it has a fault, or a defect, or

(most often) a bug, resulting in an undesirable behavior or failure. It is quite

possible to build systems that are very reliable, relatively free from usefulness

hazards, and completely useless.

Quality Team[5 marks]
• The quality plan must assign roles and responsibilities to people. As with

other aspects of planning, assignment of responsibility occurs at a strategic

level and a tactical level.

• The tactical level, represented directly in the project plan, assigns

responsibility to individuals in accordance with the general strategy. It

involves balancing level of effort across time and carefully managing personal

[5+5] CO4 L2

interactions.

• The strategic level of organization is represented not only in the quality

strategy document, but in the structure of the organization itself.

• The strategy for assigning responsibility may be partly driven by external

requirements. For example, independent quality teams may be required by

certification agencies or by a client organization.

• Additional objectives include ensuring sufficient accountability that quality tasks are

not easily overlooked;
• An independent and autonomous testing team lies at one end of the

spectrum of possible team organizations. One can make that team

organizationally independent so that, for example, a project manager with

schedule pressures can neither bypass quality activities or standards, nor

reallocate people from testing to development, nor postpone quality activities

until too late in the project.

• Separating quality roles from development roles minimizes the risk of

conflict between roles played by an individual, and thus makes most sense

for roles in which independence is paramount, such as final system and

acceptance testing.

• The more development and quality roles are combined and intermixed,

the more important it is to build into the plan checks and balances to be

certain that quality activities
• Separate roles do not necessarily imply segregation of quality activities to

distinct individuals.

• Outsourcing test and analysis activities is sometimes motivated by the

perception that testing is less technically demanding than development

and can be carried out by lower-paid and lower-skilled individuals.
• Outsourcing can be a reasonable approach when its objectives are not

merely minimizing cost, but maximizing independence

• with mixed roles requires special attention to avoid the conflicts between

roles played by an individual,

• The plan must clearly define milestones and delivery for outsourced

activities, as well as checks on the quality of delivery in both directions

5(a) Discuss about Analysis and Test Plan document in detail

Explanation 3 marks example 2 marks

[5] CO5 L2

5(b) List and explain design and code defects

At least 5 defects +explanation 5 marks

[5] CO4 L2

6(a) Explain about various dependability properties in testing process framework with

diagram

Correctness, Reliability, availability, Meantime between Failure, Safety,

Robustness should be explained properly. [6 marks definition + 2 marks

explanation]
Correctness:

• A program or system is correct if it is consistent with its specification. By

definition, a specification divides all possible system behaviours into two

classes, successes (or correct executions) and failures. All of the possible

behaviors of a correct system are successes.

• Reliability is a statistical approximation to correctness, in the sense that

100% reliability is indistinguishable from correctness. Roughly

speaking, reliability is a measure of the likelihood of correct function for

some "unit" of behavior, which could be a single use or program execution

or a period of time.

[8] CO4 L2

• Availability is an appropriate measure when a failure has some duration in

time.

• Mean time between failures (MTBF) is yet another measure of

reliability, also using time as the unit of execution. The hypothetical

network switch that typically fails once in a 24-hour period and takes about

an hour to recover has a mean time between failures of 23 hours.

• Software safety is an extension of the well-established field of system

safety into software. Safety is concerned with preventing certain

undesirable behaviors, called hazards. It is quite explicitly not

concerned with achieving any useful behavior apart from whatever

functionality is needed to prevent hazards.

• Correctness and reliability are contingent upon normal operating

conditions. It is not reasonable to expect a word processing program to save

changes normally when the file does not fit in storage, or to expect a

database to continue to operate normally when the computer loses power, or

to expect a Web site to provide completely satisfactory service to all visitors

when the load is 100 times greater than the maximum for which it was

designed.

• Software that fails under these conditions, which violate the premises of its

design, may still be "correct" in the strict sense, yet the manner in which the

software fails is important.

• It is acceptable that the word processor fails to write the new file that does

not fit on disk, but unacceptable to also corrupt the previous version of the

file in the attempt.

• It is acceptable for the database system to cease to function when the power

is cut, but unacceptable for it to leave the database in a corrupt state. And it

is usually preferable for the Web system to turn away some arriving users

rather than becoming too slow for all, or crashing.

• Software that gracefully degrades or fails "softly" outside its normal

operating parameters is robust.

• Software safety is a kind of robustness, but robustness is a more general

notion that concerns not only avoidance of hazards (e.g., data corruption)

but also partial functionality under unusual situations. Robustness, like

safety, begins with explicit consideration of unusual and undesirable

situations, and should include augmenting software specifications with

appropriate responses to undesirable events

6(b) List the various types of faults with examples

4 faults with example 4 marks

[2] CO4 L2

