USN					

Internal Assessment Test 3 – July 2021

Sub:	D	ata Mining ar	nd Data warel		17 ABBOBSITION		Sub Code:	18CS641/17 CS651	Brar	nch:	ISE		
Date:	3	30/07/2021	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI A,B&C	<u> </u>		1	OF	BE
					VE FULL Ques			, , ,		MA	RKS		RBT
1	Dis	scuss about			nods for gener		frequent it	emsets with		[10]	CO3	L2
		diagrams											
	Tr	Traversal of Itemset Lattice: [3 marks explanation + 1 mark Diagram]											
	• A search for frequent itemsets can be conceptually viewed as a traversal on the							n the					
			tice shown	_									
	•				y an algorithm			e lattice stru	cture				
			_	=	temset genera		process.						
	1. (-	_	ific-to-Gener								
	•	_	_	_	general-to-spe				pairs				
		-			erged to obtain								
	•				strategy is e	ffect	ive, provid	ed the maxii	num				
		length of a	frequent it	temset is no	ot too long.								
	•		_	-	itemsets that								
		shown in I	Figure 6.19	(a), where t	the darker nod	les re	present infi	requent items	ets.				
	•	Alternative	ely, a spec	cific to-ger	neral search s	strate	gy looks f	or more spe	cific				
		frequent it	emsets first	t, before fin	nding the more	e gen	eral freque	nt itemsets.					
	•	This strat	tegy is use	eful to dis	scover maxin	nal f	requent it	emsets in d	ense				
		transactio	ons, where	the frequer	nt itemset bor	der i	s located no	ear the botto	m of				
		the lattice,	as shown i	in Figure 6.	19(b).								
	•	The Aprio	ri, principle	e can be ap	plied to prun	e all	subsets of	maximal freq	uent				
		itemsets. S	Specifically	, if a candi	date k-itemse	t is 1	naximal fre	equent, we do	o not				
		have to ex	amine any	of its subse	ts of size k - 1								
	•	However,	if the can	didate k-it	temset is infr	eque	nt, we nee	d to check a	ıll of				
		its k - 1 su	ıbsets in th	e next iter	ation.								
	•	Another a	approach is	s to comb	ine both gen	eral-	to-specific	and specifi	c-to-				
		general sea	arch strateg	gies.									
	•	This bidire	ectional app	oroach requ	ires more spa	ce to	store the ca	andidate item	sets,				
				_	ntify the free								
		configurat	ion shown	in Figure 6	.19(c).								
		-											

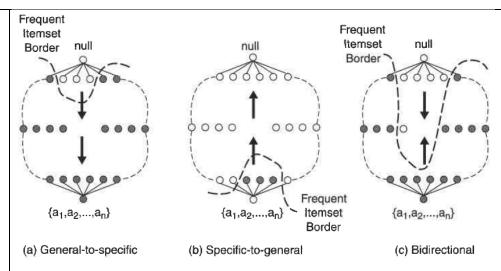


Figure 6.19. General-to-specific, specific-to-general, and bidirectional search.

Equivalence Classes: [2 marks explanation + 1 mark Diagram]

- Another way to envision the traversal is to first partition the lattice into disjoint groups of nodes (or equivalence classes).
- A frequent itemset generation algorithm searches for frequent itemsets within a particular equivalence class first before moving to another equivalence class.
- As an example, the level-wise strategy used in the Apriori algorithm can be considered to be partitioning the lattice on the basis of itemset sizes; i.e., the algorithm discovers all frequent l-itemsets first before proceeding to largersized itemsets.
- Equivalence classes can also be defined according to the prefix or suffix labels of an itemset.
- In this case, two itemsets belong to the same equivalence class if they share a common prefix or suffix of length k.
- In the prefix-based approach, the algorithm can search for frequent itemsets starting with the prefix a before looking for those starting with prefixes b, c and so on.
- Both prefix-based and suffix-based equivalence classes can be demonstrated using the tree-like structure shown in Figure 6.20.

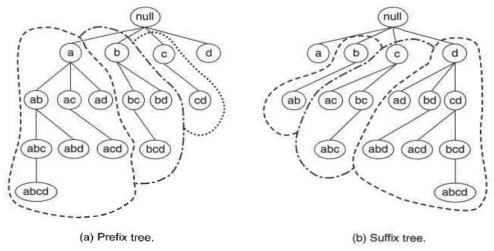


Figure 6.20. Equivalence classes based on the prefix and suffix labels of itemsets.

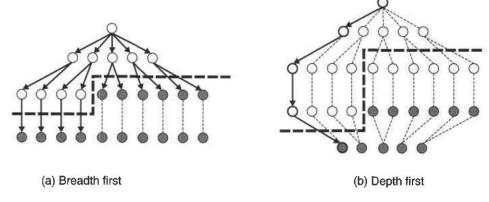
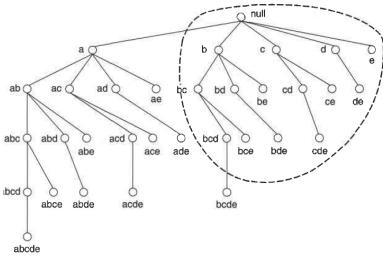


Figure 6.21. Breadth-first and depth-first traversals.

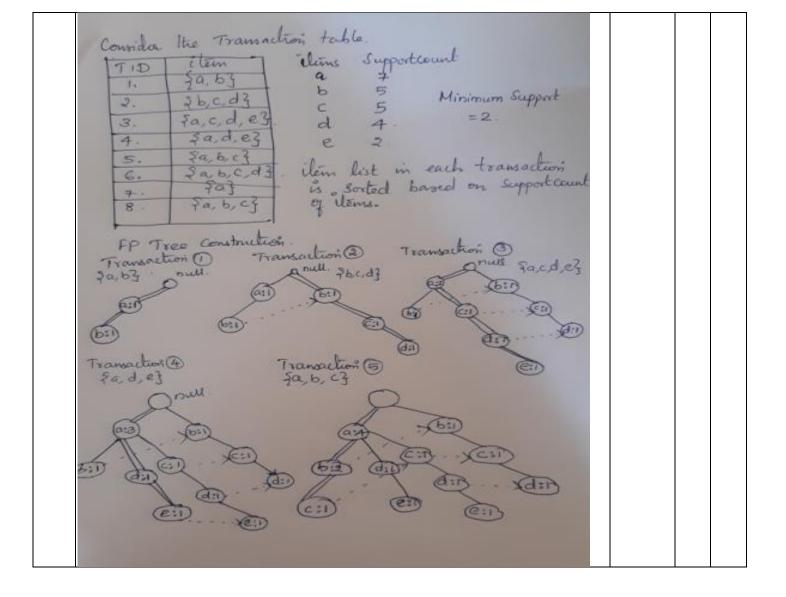
Breadth-First versus Depth-First: [2 marks explanation + 1 mark Diagram]

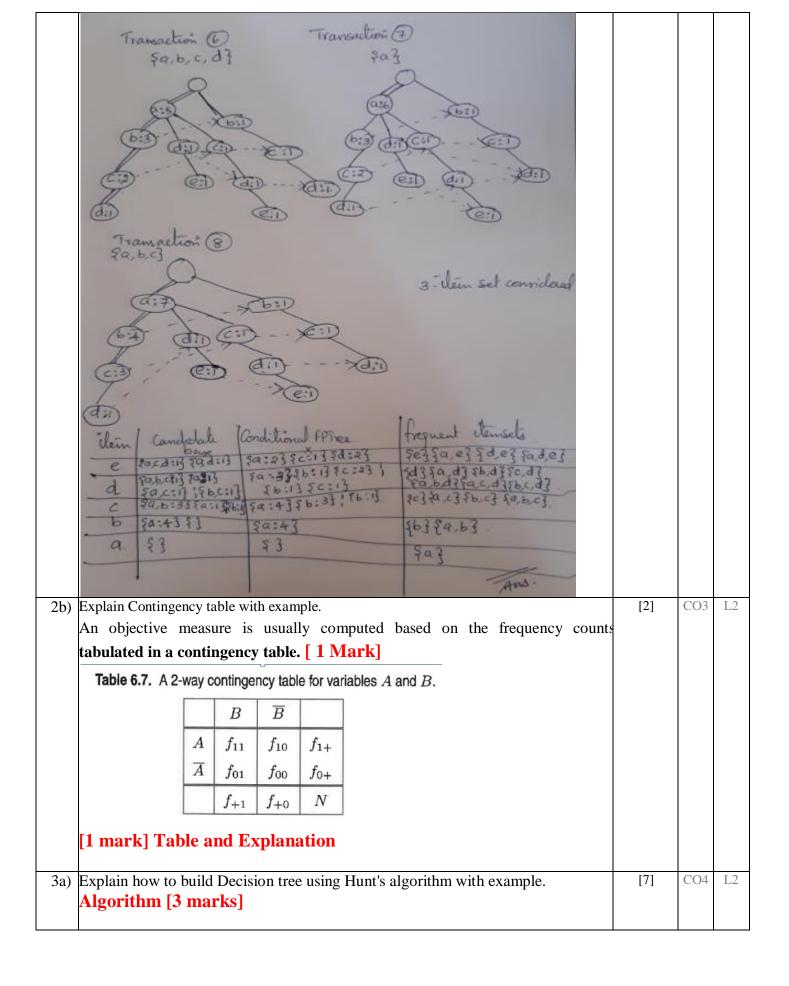
- The Apriori, algorithm traverses the lattice in a breadth-first manner as shown in Figure 6.21(a).
- It first discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets, and so on, until no new frequent itemsets are generated.
- The itemset lattice can also be traversed in a depth-first manner, as shown in Figures 6.21(b) and 6.22.
- The algorithm can start from, say, node a, in Figure 6.22, and count its support to determine whether it is frequent.
- If so, the algorithm progressively expands the next level of nodes, i.e., ab, abc, and so on, until an infrequent node is reached, say, abcd.
- It then backtracks to another branch, say, abce, and continues the search from there.
- The deprth-first approach is often used by algorithms designed to find maximal frequent itemsets.
- This approach allows the frequent itemset border to be detected more quickly than using a breadth-first approach.
- Once a maximal frequent itemset is found, substantial pruning can be performed on its subsets.



- Figure 6.22. Generating candidate itemsets using the depth-first approach.
- A maximal frequent itemset is defined as a frequent itemset for which none of its immediate supersets are frequent.
- For example, if the node bcde shown in Figure 6.22 is maximal frequent, then

	_			sit the subtrees rooted at bd,, be, c, d, and e		
		•	•	maximal frequent itemsets.		
•			-	ent, only the nodes such as ac and bc are not		
		-		es of ac and bc may still contain maximal		
	frequent it					
•	The depth support of			ws a different kind of pruning based on the		
•	For examp	ole, su	ippose the support	for {a,b,c} is identical to the support for {a,		
	b}. The s	subtre	es rooted at abd	and abe can be skipped because they are		
	guaranteed	d not t	to have any maxima	al frequent itemsets.		
				a set. Construct the FP trees by showing the	CO3	
tre	ess separatel	ly afte		a set. Construct the FP trees by showing the esaction. Find the Frequent Itemset using FP	 CO3	
tre	ess separatel owth <u>algorit</u>	ly afte thm.	r reading each trar		 CO3	
tre	ess separatel owth algorit TID	ly afte	er reading each tran		 CO3	
tre	ess separatel owth algorit TID	ly afte	ITEM {a, b}		 CO3	
tre	ess separatel owth algorit TID	ly afte	er reading each tran		 CO3	
tre	ess separatel owth algorit TID	ly afte	ITEM {a, b}		 CO3	
tre	ess separatelowth algorit TID	ly afte	ITEM {a, b} {b, c, d}		 CO3	
tre	ess separatel owth algorit TID 1 2 3	ly afte	ITEM {a, b} {b, c, d} {a, c, d, e}		 CO3	
tre	ess separatelowth algorit TID 1 2 3	ly afte	ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e}		 CO3	
tre	ess separatelowth algorit TID 1 2 3 4	ly afte	ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e} {a, b, c}		 CO3	





Hunt's Algorithm

In Hunt's algorithm, a decision tree is grown in a recursive fashion by partitioning the training records into successively purer subsets. Let D_t be the set of training records that are associated with node t and $y = \{y_1, y_2, \ldots, y_c\}$ be the class labels. The following is a recursive definition of Hunt's algorithm.

Step 1: If all the records in D_t belong to the same class y_t , then t is a leaf node labeled as y_t .

Step 2: If D_t contains records that belong to more than one class, an attribute test condition is selected to partition the records into smaller subsets. A child node is created for each outcome of the test condition and the records in D_t are distributed to the children based on the outcomes. The algorithm is then recursively applied to each child node.

	binary	catego	rical	uqus class
Tid	Home Owner	Marital Status	Annual	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Construction of the tree: [2 marks]

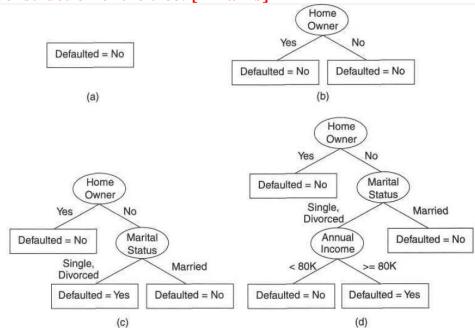


Figure 4.7. Hunt's algorithm for inducing decision trees.

Explanation: [2 marks]

- The tree, however, needs to be refined since the root node contains records from both classes. The records are subsequently divided into smaller subsets based on the outcomes of the *Home Owner* test condition, as shown in Figure 4.7(b).
- The justification for choosing this attribute test condition will be discussed later.
- For now, we will assume that this is the best criterion for splitting the data at

	t]	his point.									
•	·	Hunt's algo	orithi	m is tł	nen ap	plied recursively	to each child of the root node.				
•	From the training set given in Figure 4.6, notice that all borrowers who					are					
	home owners successfully repaid their loans.										
•	• The left child of the root is therefore a leaf node labeled Defaulted = No (see					(see					
	Figure 4.7(b)).										
•	F	or the rig	ght cl	hild, v	ve nee	ed to continue ap	plying the recursive step of Hu	nt's			
	algorithm until all the records belong to the same class. The trees resulting				ing						
	fi	rom each	recui	rsive s	step ar	e shown in Figure	es 4.7(c) and (d).				
,				_	-		ble below for a binary classificat		[3]	CO4	L3
-					ropy o	t this collection of	of training examples with respec	t			
to	o the	e positive				_					
		Table	4.2.	Data s	set for l	Exercise 3.					
	Iı	nstance	a_1	a_2	a_3	Target Class					
		1	T	Т	1.0	+					
		2	\mathbf{T}	\mathbf{T}	6.0	+					
		3	\mathbf{T}	\mathbf{F}	5.0	_					
		4	\mathbf{F}	\mathbf{F}	4.0	+					
		5	\mathbf{F}	${ m T}$	7.0	_					
		6	\mathbf{F}	${f T}$	3.0	_					
		7	\mathbf{F}	\mathbf{F}	8.0	_					
		8	\mathbf{T}	\mathbf{F}	7.0	+					
		9	\mathbf{F}	${f T}$	5.0	_					
P	P(+)	=4/9 and	l P(-))=5/9	. [1	mark]	ive examples. Thus,				
		entropy of			_	•					
						= 0.9911. [2 ma			F01	004	1.0
	_	ain in deta p rithm [n tree induction a	llgorithm with example dataset.		[8]	CO4	L2
	4.3	.5 Alg	orit	hm f	or De	ecision Tree In	duction				
		A skeleto	n de	cision	tree i	nduction algorith	m called TreeGrowth is shown				
						_	consists of the training records				
	E a	ind the at	ttribu	ite set	F. T	he algorithm wo	rks by recursively selecting the				
	bes	t attribut	e to	split t	he da	ta (Step 7) and ϵ	expanding the leaf nodes of the				
	_										
					eton d	ecision tree indu	ction algorithm.				
		eGrowth (,	F) = t	rue then					
	2:	leaf =									
	3:	leaf.lab		Class	$\mathtt{ify}(E)$						
	4: 5:	return l else	eaf.								
	6:	root =									
	7:					$st_split(E, F).$	et aand)				
	8: 9:	for each			ossible	outcome of root.te	st_cona }.				
	10:	$E_v =$	$\{e \mid \imath$	root.te		$d(e) = v \text{ and } e \in E$	}.				
	11:				$\operatorname{wth}(E)$		the edge $(root \rightarrow child)$ as v .				
	12: 13:	end for		as desc	enden	of root and label	the edge $(root \rightarrow cmia)$ as v .				
		end if									
1	15:	return roc	ot.								
F	Exa	mple C	onst	ructi	on of	Decision Tre	e with dataset[4 marks]				
		1									

	[2]	CO4	L3
- + + +			
8: Add r to the bottom of the rule list: $R \longrightarrow R \vee r$. 9: end while 10: end for 11: Insert the default rule, $\{\}\longrightarrow y_k$, to the bottom of the rule list R . Algorithm +explanation[3+2 marks] Explanation of Diagram 2[3 marks]			
Algorithm 5.1 Sequential covering algorithm. 1: Let E be the training records and A be the set of attribute-value pairs, $\{(A_j, v_j)\}$. 2: Let Y_o be an ordered set of classes $\{y_1, y_2, \ldots, y_k\}$. 3: Let $R = \{ \}$ be the initial rule list. 4: for each class $y \in Y_o - \{y_k\}$ do 5: while stopping condition is not met do 6: $r \leftarrow$ Learn-One-Rule (E, A, y) . 7: Remove training records from E that are covered by r .			
Explain Rule based classifier sequential algorithm with illustration	[8]	CO4	L2
 provides a graphical representation of the probabilistic relationships among a set of random variables Naive Bayes classifiers may seem too rigid, especially for classification problems in which the attributes are somewhat correlated. 			
 2. A probability table associating each node to its immediate parent nodes Differences: [1mark] 			
variables.			
1. A directed acyclic graph (dag) encoding the dependence relationships among a set of			
 A Bayesian belief network (BBN), or simply, Bayesian network, provides a graphical representation of the probabilistic relationships among a set of random variables. There are two key elements of a Bayesian network: [1mark] A directed acyclic graph (dag) encoding the dependence relationships among a set of 			

	Tid	Refund	Marital	Taxable	.
			Status	Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes
(Conf	idence:	= 3/10=3	30 <mark>% [1</mark>	Mar
			3/3=1009	_	
.)]	Expl	ain vari	ious met	hods for	evalu
]	Hold	Out N	Iethod	[1.5 m	arks]
]	Rand	lom Sa	mpling[1	1.5 ma	rks]
(Cros	s valida	ition[1.5	5 mark	ks]
]	Boot	strap m	ethod[1	.5 mar	·ks]

-To do this class labels of the test records must be known. · Methods for evaluating the performance of a clamifies Hold out Method -> Original data with labeled examples is partitioned into 2 disjoint sets called the training and the lest sets -> classification Model is then induced from the training set and its performance is evaluated on the last set. -> Proportion: 50-50 or 3/3-1/3. -> Accuracy can be estimated based on the test set, dimitations: € > Fewer labeled, examples one available. Other records are held for testing. - Induced Model may not be as good as when all the records one wood for training. () Model highly dependent on the composition of the braining and test sets. -Smaller the training set tipe, the larger the variance of the model. -) If training set is too large, accuracy from smaller lest test set is less vehicle. 1 Training and test sets are dependent They are subset of original data. a class may be ever represented in one subst and will be under sepresented in the other, and there

Random Subsampling: sibHold out mid repealed several trans to improve the estimation of a classifier's performance, then this approach is random subsampling acci - model occuracy during it iteration orecall accuracy accent = = acce/k -s This is also not using as much data for training. So holdout mtd plans are still encountered. -> No control over the no of times record is used for testing and traing. Some records oright be used more often than others. Cross validation: - Alternate to random subsampling - Sach record is used the same no of times for training and exactly once for leating. - NATO Pastition the data who a equal sized subset · @ chaose one of the Subsets for training and Other for lesting. @ Swap the roles of the Subsets So that the previous training Sel becomes the test let and Viceversa. This is 2 cross validation. Total orr is used obtained by summing up the exons for both runs. (4) K-fold Cross validation and generalizes the approach by segmenting the data into k-egnal sized particlishs. diving each run one of the partitions chosen to testing while the rest of them are used for testing exactly training.

-> This procedure is repealed & times so that each partition is and for lesting exactly once. -> Total orror = sum up the essess for all kru -> K = N. i.e, each test set contains one Leave one out: -3 Adv: All the data und for training. Mulnally exclusive lest test dis Adv: Compliationally expensive.
Variance of estimated performance is high. Bootstap ontd: -The previous mids use sampling without replacement. So No, duplicate records in the training and test sets. -> Boot strap uses sampling with replacement -> record already chosen for training is put back into the visignal pool of records so that it is equally likely to be redrawn. -> Original data -> N records. We can show that on average a bootstrap sample of size N contains about 63.2%. of the records an original data - This approximation follows from the fact that the probability a record Chosen by Bookstrap Sample is When N & sufficeretty large then to

	Dabore probability approaches 1-e ⁻¹ = 0.632. Records that are not included in the bootstrap sample become part of the Set. Set. Sampling procedure is repealed b'time to generate b bootstrap samples.			
<u>)</u>	Given the training set, Classify the test record given below using Naive Bayes	[4]	CO4	

6b) Given the training set, Classify the test record given below using Naive Bayes

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	no	Yes	?

A: attributes M: mammals N: non-mammals

[1 mark for each step]

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{5}{7} \times \frac{5}{7} = 0.3748$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{6}{13} \times \frac{9}{13} = 0.0189$$

$$P(A \mid M)P(M) = 0.3748 \times \frac{7}{20} = 0.13118$$

$$P(A \mid N)P(N) = 0.0189 \times \frac{13}{20} = 0.012285$$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals