ARS
USN \\;@fﬂ% .

g\% ;:MRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

S
=y
[
o
=]

*

Internal Assessment Test 3 — July 2021

Sub: | Data Mining and Data warehousing Sub Code: (1:%%?41/17 Branch: | ISE
Date: | 30/07/2021 | Duration: | 90 min’s | Max Marks: [50 | Sem/Sec: | VI AB&C OBE
Answer any FIVE FULL Questions MARKS | CO |RBT
1 |Discuss about various alternate methods for generating frequent itemsets with [10] |CO3| L2

diagrams

Traversal of Itemset Lattice: [3 marks explanation + 1 mark Diagram]

e A search for frequent itemsets can be conceptually viewed as a traversal on the

itemset lattice shown in Figure 6.19.

The search strategy employed by an algorithm dictates how the lattice structure

is traversed during the frequent itemset generation process.

1. General-to-Specific versus Specific-to-General:

e The Apriori, algorithm uses a general-to-specific search strategy, where pairs
of frequent (k- I)-itemsets are merged to obtain candidate k-itemsets.

e This general to-specific search strategy is effective, provided the maximum
length of a frequent itemset is not too long.

e The configuration of frequent itemsets that works best with this strategy is
shown in Figure 6.19(a), where the darker nodes represent infrequent itemsets.

e Alternatively, a specific to-general search strategy looks for more specific
frequent itemsets first, before finding the more general frequent itemsets.

e This strategy is useful to discover maximal frequent itemsets in dense
transactions, where the frequent itemset border is located near the bottom of|
the lattice, as shown in Figure 6.19(b).

e The Apriori, principle can be applied to prune all subsets of maximal frequent
itemsets. Specifically, if a candidate k-itemset is maximal frequent, we do not
have to examine any of its subsets of size k - 1.

e However, if the candidate k-itemset is infrequent, we need to check all off
its k - 1 subsets in the next iteration.

e Another approach is to combine both general-to-specific and specific-to-
general search strategies.

e This bidirectional approach requires more space to store the candidate itemsets,
but it can help to rapidly identify the frequent itemset border, given the
configuration shown in Figure 6.19(c).




Frequent
ltemset Frequent
Border null null temset null

Jr \ i~ t/ \\ r’ T \ {.f
I

\ I 1 |
] | I ]
dooe e00@ 0000 oooét doe
| | b t L Y1
/f \\ / \\ /‘ \\ \__,,

\~. ’}/ . / ’ ’,, \‘- ’J,
Q === Eé \ Frequent g
{a(.az,-...an} {a;,a2,....ap} = ltemset {a{,az.....an}

Border
(a) General-to-specific (b) Specific-to-general (c) Bidirectional

Equivalence Classes: [2 marks explanation + 1 mark Diagram]

a\ 8 = 8 Border ™, :7;% 7 e T
- \ , e 7 H-\\ 1’ I T
/
/
/

\
\

I

I

|

O ,Q..?
I

!

’

—_—

—— ——

Figure 6.19. General-to-specific, specific-to-general, and bidirectional search.

Another way to envision the traversal is to first partition the lattice into disjoint
groups of nodes (or equivalence classes).
A frequent itemset generation algorithm searches for frequent itemsets within a
particular equivalence class first before moving to another equivalence class.
As an example, the level-wise strategy used in the Apriori algorithm can be
considered to be partitioning the lattice on the basis of itemset sizes; i.e., the
algorithm discovers all frequent I-itemsets first before proceeding to larger-
sized itemsets.
Equivalence classes can also be defined according to the prefix or suffix
labels of an itemset.
In this case, two itemsets belong to the same equivalence class if they share a
common prefix or suffix of length k.
In the prefix-based approach, the algorithm can search for frequent itemsets
starting with the prefix a before looking for those starting with prefixes b, ¢ and
S0 on.
Both prefix-based and suffix-based equivalence classes can be demonstrated
using the tree-like structure shown in Figure 6.20.

P - -

Saw=-

(a) Prefix tree. (b) Suffix tree.

Figure 6.20. Equivalence classes based on the prefix and suffix labels of itemsets.




O O O Q.
'—/d-—h-—.i.\—__

ob@mcooeo

ooh¢oooc

00000

e —-\ﬂ \
® o’ é ¢
(a) Breadth first (b) Depth first

Figure 6.21. Breadth-first and depth-first traversals.

Breadth-First versus Depth-First: [2 marks explanation + 1 mark
Diagram]

The Apriori, algorithm traverses the lattice in a breadth-first manner as shown
in Figure 6.21(a).

It first discovers all the frequent 1-itemsets, followed by the frequent 2-
itemsets, and so on, until no new frequent itemsets are generated.

The itemset lattice can also be traversed in a depth-first manner, as shown in
Figures 6.21(b) and 6.22.

The algorithm can start from, say, node a, in Figure 6.22, and count its support
to determine whether it is frequent.

If so, the algorithm progressively expands the next level of nodes, i.e., ab, abc,
and so on, until an infrequent node is reached, say, abcd.

It then backtracks to another branch, say, abce, and continues the search from
there.

The deprth-first approach is often used by algorithms designed to find maximal
frequent itemsets.

This approach allows the frequent itemset border to be detected more quickly|
than using a breadth-first approach.

Once a maximal frequent itemset is found, substantial pruning can be
performed on its subsets.

ab

abc

bed ¢

abce abde acde bede

O
abcde

Figure 6.22. Generating candidate itemsets using the depth-first approach.
A maximal frequent itemset is defined as a frequent itemset for which none of
its immediate supersets are frequent.
For example, if the node bcde shown in Figure 6.22 is maximal frequent, then




the algorithm does not have to visit the subtrees rooted at bd,, be, ¢, d, and ¢
because they will not contain any maximal frequent itemsets.

e However, if abc is maximal frequent, only the nodes such as ac and bc are not
maximal frequent (but the subtrees of ac and bc may still contain maximal
frequent itemsets).

e The depth-first approach also allows a different kind of pruning based on the
support of itemsets.

e For example, suppose the support for {a,b,c} is identical to the support for {a,
b}. The subtrees rooted at abd and abe can be skipped because they are
guaranteed not to have any maximal frequent itemsets.

2a)

Consider the following transaction data set. Construct the FP trees by showing the
tress separately after reading each transaction. Find the Frequent Itemset using FP
growth algorithm.

TID ITEM
1 {a, b}
2 {b, c, d}
3 {a,c d, e}
4 {a, d, e}
5 {a, b, c}
6 {a, b, c, d}
7 {a}
8 {a, b, c}

(8]

COos3

L3







2b)

Explain Contingency table with example.
An objective measure is usually computed based on the frequency counts
tabulated in a contingency table. [ 1 Mark]

Table 6.7. A 2-way contingency table for variables A and B.

B | B
A fun | fio | frs
A | for | foo | fo+
fri | feo | N

[1 mark] Table and Explanation

(2]

COo3

L2

3a)

Explain how to build Decision tree using Hunt's algorithm with example.
Algorithm [3 marks]

[7]

CO4

L2




Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let D; be the set
of training records that are associated with node ¢t and y = {y1,v2,..., ¥} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in [ belong to the same class y;, then t is a leaf
node labeled as y;.

Step 2: If D; contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in D are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.

> G
(\G‘b eoo

& & & 2
o & s ®

Tid Home Marital Annual Defaulted
Owner Status Income Borrower

| Yes Single | 126K  [No =
| No ‘Married | 100K |[No

No Single 70K 1 i
| Yes Married | 120K [No
| No | Divorced | 95K Yes

 Married | 60K NGt
| Yes Divorced | 220K  |No
No Single | 85K Mes i
No |Married | 75K i
No Single | 90K  |Yes

4100 D O B T
Z
[e]

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Construction of the tree: [2 marks]

Defaulted = No

Defaulted = No Defaulted = No

(a) (b)

No
Marital
Status

Defaulted = No

Yes

Defaulted = No

No Single,
Divorced
Marital
Status

Defaulted = Yes Defaulted = No Defaulted = No Defaulted = Yes

Yes Married

Defaulted = No

Single,
Divorced

Married <80

(c) (d)
Figure 4.7. Hunt's algorithm for inducing decision trees.

Explanation: [2 marks]
e The tree, however, needs to be refined since the root node contains records
from both classes. The records are subsequently divided into smaller
subsets based on the outcomes of the Home Owner test condition, as shown
in Figure 4.7(b).
e The justification for choosing this attribute test condition will be discussed
later.
e For now, we will assume that this is the best criterion for splitting the data at




this point.

Hunt's algorithm is then applied recursively to each child of the root node.
From the training set given in Figure 4.6, notice that all borrowers who are
home owners successfully repaid their loans.

The left child of the root is therefore a leaf node labeled Defaulted = No (seg
Figure 4.7(b)).

For the right child, we need to continue applying the recursive step of Hunt's
algorithm until all the records belong to the same class. The trees resulting
from each recursive step are shown in Figures 4.7(c) and (d).

3b) [Consider the training examples shown in the table below for a binary classification [3] CO4| L3
problem. What is the entropy of this collection of training examples with respect
to the positive class?
Table 4.2. Data set for Exercise 3.
Instance | ay a3 a3 | Target Class
1 T T 1.0 +
2 T T 6.0 +
3 T F 5.0 —
4 F F 4.0 +
5 F T 7.0 —
6 F T 3.0 —
7 F F 8.0 —
8 T F 7.0 +
9 F T 5.0 —
There are four positive examples and five negative examples. Thus,
P(+) =4/9 and P(-) =5/9. [ 1 mark]
The entropy of the training examples is
—4/9 log2(4/9) — 5/9 log2(5/9) = 0.9911. [2 marks]
Explain in detail about Decision tree induction algorithm with example dataset. [8] CO4| L2

4a)

u.

in
E

Algorithm [ 4 marks]

3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown
Algorithm 4.1. The input to this algorithm consists of the training records
and the attribute set F'. The algorithm works by recursively selecting the

best attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.

Tr

14
15

1v
2:

BRADDRW

9:
10:
11:
12:
13:

eeGrowth (E, F)
: if stopping cond(E,F') = true then
leaf = createNode().
leaf.label = Classify(E).
return leaf.
else
root = createNode().
root.test_cond = find best_split(E, F).
let V = {v|v is a possible outcome of root.test_cond }.
for each v € V do
E, = {e | root.test_cond(e) = v and e € F}.
child = TreeGrowth(E,, F).
add child as descendent of root and label the edge (root — child) as v.
end for
: end if
: return root.

Example Construction of Decision Tree with dataset] 4 marks]




4b)

\What is Baysian Belief Network? How does it differ from Naive based classifier?

® A Bayesian belief network (BBN), or simply, Bayesian network, provides a graphical
representation of the probabilistic relationships among a set of random variables.
There are two key elements of a Bayesian network: [ 1mark]

1. A directed acyclic graph (dag) encoding the dependence relationships among a set of]
variables.

2. A probability table associating each node to its immediate parent nodes

e Differences: [ Imark]

e provides a graphical representation of the probabilistic relationships among a set of
random variables

o Naive Bayes classifiers may seem too rigid, especially for classification problems in
which the attributes are somewhat correlated.

(2]

CO4

L2

5a)

Explain Rule based classifier sequential algorithm with illustration

Algorithm 5.1 Sequential covering algorithm.
. Let E be the training records and A be the set of attribute-value pairs, {(A;,v;)}.
: Let Y, be an ordered set of classes {y1,%2,. .-, Yk}
: Let R = { } be the initial rule list.
: for each class y € Y, — {yx} do
while stopping condition is not met do
r « Learn-One-Rule (E, A, y).
Remove training records from F that are covered by r.
Add r to the bottom of the rule list: R — RV .
end while
end for
11: Insert the default rule, {} — g, to the bottom of the rule list R.

R B EI AN S

—
=

Algorithm +explanation] 3+2 marks]
Explanation of Diagram 2[ 3 marks]

..................

T

-+

L+

+

(c) Step 2 o

+

+
b -

(d) Step 3

Figure 5.2. An example of the sequential covering algorithm.

: R2

(8]

CO4

L2

5h)

Given the data set compute the confidence and accuracy for the rule
Refund = yes --> No

(2]

CO4

L3




| |
Tid Refund Marital Taxable
Status  Income Cheat

1 |Yes Single 125K No
2 |No Married |100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 |No Divorced | 95K Yes
6 |No Married |60K No
7 |Yes Divorced |220K No
8§ |No Single 85K Yes
9 |No Married |75K No
10 |No Single 90K Yes

Confidence= 3/10=30% [1 Mark]
Accuracy=3/3=100% [1 Mark]

6a)

Explain various methods for evaluating the performance of the classifiers
Hold Out Method [1.5 marks]

Random Sampling[1.5 marks]

Cross validation[1.5 marks]

Bootstrap method[1.5 marks]

(6]

CO4

L2




SO e RS i, o b fut Yeeovels
tovabt ke knmon.

V| - Metfuds for embabind Wo peforons g <

/ Hetd ot Mebad ) 0
1 — Owiginal An]n writh Lakbeleq é’nn.mfuu o
lbied i 2 dajeink s ol ez
('\(u’m;.j and It Lesl sebs
"') Clﬂw{f"(al’wﬁ P-(C&; 13 lk“.¢~ M\A‘W‘ ‘{"‘m [@
{1w.m.&) gel- CLntl LL& '%ﬁ'm«nw LJA 0«’&.‘-«4\«%
& |zu.l> foat /kE’ ’ P
> Poepxhen & B5T5° DY %, F /3 .
- A;;i’:\p.u. can b e}c“;m@ld bcw,_pl en WS
- C!LLLM" L‘% [tie \;L\Cl\,u:ccg WCQR/Q o W M%
/ Lionitel o |
®© = Fewed L‘Juef.ml ‘ekaw\{)ll.l el Q,qu,.jfal,l, OU\Z,..
vecols are  heled o Aafing .
’ PMedasad Klald tray ncb e o il
all e vecorls o e ércuﬁu;o - y
@—-ﬁ ""OCLPJ I\J:}“‘d dﬂj’wgut O ke % A‘:i‘ .
—Q'Srno\‘/(d tis ha ""‘l-,_: Seb e, It ;‘t 4

A M




4%

\ar\(‘h oM g(\Lt,An\l’tlav

_,._')'U"c{(" PLJ n\'l, \.rutlﬂ' &'w&u,o t‘-lm:(_l (Edﬁwf

“\(‘ leLn Lu } a ("na‘.chs“l 3 ,,‘qumw Vein

f'k:\ “”““““‘ B yordemn A kot a, ’)((.‘?,

Qace * Y M L' O(CaVRE U J)w\u\a "f', l lo..'

(@) a\"\“ Ll ey Yir e -[I &r-(. O = ‘.f.:A a(c‘./k
r\hn (R
—:’V‘\"‘;"‘“\ A {\l»)l'- I\v( (R aA n-,“‘& AJA ¥4Y

h(u'nu\.), Co J\r(\tl(,\\} nJc' ,\lm o ‘_e-u

On \L-\.L\E‘\; d

-5 Ne anl\c( oven ke ne. ¢ E'lw\u ’h”(mcl
G weed f.a t(u‘,(vﬁ owel f\m,\J Some veconl
mighl fe  lued mese b(u-. Sharr offors

K

|_"("3S \ (-.Qu 1,1( i

—3 4‘((’\)\.&(( tv \a‘(’{‘”) A Jﬂamf(. v\a
(.;u;"- \((c‘f(" LA L‘-Q(D‘ H.L: /gﬁn\ﬂ M ? M.'

.?(\ ,{,(“ﬂuj and ehac“‘y Onw %« 'th_,‘j

,,Hd " \L
—_) C Pa‘t J")(m Ithe ({AL\ (" w 3!2& A‘M
n\ﬂ—. h "y e
6 gwc\\r ﬁ‘t’u \';874 ltu. (gu‘sek '.&a " |
previous chnuv Sel- becamu ) Loa 3

\/cc,cw\sc hool
Ths & & cwis Valiclalion

Lsed! ohltaltrad [:y éu.f

boft\ v uns.




- Tho PmoL»Sw P 1el¢ab3 b Aaa 28
hat each porlifn oacd Ao “”{"?
ﬁ-ﬂﬂ&u ENnLe .

—> Tti) ooy = Sum Lp il eiets fx ol
.Z,uwe pre Dok
Giletaloees
— k:ﬂ Le,
vewrd. [t deJa aed JEC‘ f‘rw-g

each Test Lk Cmn"mz“ Cno

. Al
—= Adv MLV(M[ Q_XMV@ J.a/ jx’ué
s.s/\alv Cown u)a,Cav_,uy
\/cAutin o P
u’« /\(_j(
BQ{'{'S"Q m{d

’:‘/—%ﬂlﬁpmmu mids wse [‘J(aﬁ 0O 1 sy,

\.( g( N o
’I%(gmﬁ ® Lot /{f/t‘

{YCLL,(A wr

— Bm“‘{ .S{‘:r._f\j (g€ s /gamp(;_.,:? ort Y?
—}'Tewc, alveady chosen - Prens
LA PMJ' Fack s ik "\"’5‘04_1
W'Qw'ro(é Lo bt i a e’j'
k be qep'*a.-.,on 7
- O*ngth dJe > N yocecels |

hNe ean show #K<t ©» aw

bénl‘S/mf Aom,;(‘z csb, 3,
3 RY- %, Yecols




1 6\, oreve W f. [ 5,’)‘,(,' Y

' - D632
> Rocords That e hof tchucleof o I
Hevt-<ha lample  becono b 6 M
j,h CF = P S fﬁc » /
Sek

b Iamsf-f/ya/s é’amf]ee.

(’u th.MJ- a-}-c

> damplug prodine u vepealiat P L

6b)

Given the training set, Classify the test record given below using Naive Bayes
classifier.

Name Give Birth Can Fly |Live in Water| Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark |yes no yes no non-mammals
turtle no no sometimes |yes non-mammals
penguin no no sometimes |yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander |no no sometimes |yes non-mammals
gila monster [no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly |Live in Water| Have Legs Class
yes no no Yes ?

A: attributes

M: mammals

N: non-mammals

[1 mark for each step]

P(A[M) —9x§x§x§—o 3748
7 7 7

F>(A|N)_1 10,0,9 00189
13713713713
P(A|M)P(M) = 0.3748><% =0.13118

P(A| N)P(N) =0. msw% = 0.012285

P(AIM)P(M) > P(A|N)P(N)
=> Mammals

[4]

CO4

L3







