
CMR Institute of Technology, Bangalore
DEPARTMENT OF INFORMATION

SCIENCE AND ENGINEERING
III – INTERNAL ASSESSMENT

Semester: 6-CBCS 2017 /2018 Date: 02 Aug 2021
Subject: MOBILE APPLICATION DEVELOPMENT (18CS651/17CS661/15CS661)
Faculty: Mr Sudhakar K N
Time: 01:00 PM – 02:30 PM Max Marks: 50

Scheme & Solution
ANSWER_ANY 5 Question(s)

Marks CO BT/CL
1a. Define Content Provider. Explain with an example sharing the data between application using
Content Provider.

[7.0] 1 [2]
Scheme: Definition 3M + Process 4M

Solution
A ContentProvider is a component that interacts with a repository. The app doesn't need to know
where or how the data is stored, formatted, or accessed.
A content provider:
Separates data from the app interface code
Provides a standard way of accessing the data
Makes it possible for apps to share data with other apps
Is agnostic to the repository, which could by a database, a file system, or the cloud.

Example of an app sharing data using a Content Provider:
Consider an app that keeps an inventory of hats and makes it available to other apps that want to
sell hats. The app that owns the data manages the inventory, but does not have a customer- facing

interface. Two apps, one that sells red hats and one that sells fancy hats, access the inventory
repository, and each fetch data relevant for their shopping apps.

1b. List the advantages of Content Provider.
[3.0] 1 [1]

Scheme: Advantages 3M

Solution
Advantages:

➢ Securely make data available to other Apps
➢ Manage access permissions to App database
➢ Store data or develop backend independently from UI
➢ Standardized way of accessing data
➢ Required to work with cursorLoaders

2a. List the various options provided by the android system to store the application data
persistently. Explain each of these based on usage.

[6.0] 1 [2]
Scheme: Options 6M

Solution
Android provides several options for you to save persistent application data. Your data storage
options are the following:
Shared preferences—Store private primitive data in key-value pairs. Internal storage—Store

private data on the device memory.

• External storage—Store public data on the shared external storage.

• SQLite databases—Store structured data in a private database.

• Network connection—Store data on the web with your own network server.

• Cloud Backup—Backing up app and user data in the cloud.

• Content providers—Store data privately and make them available publicly.

• Firebase realtime database—Store and sync data with a NoSQL cloud database. Data

is synced across all clients in real time, and remains available when your app goes offline.

2b. Differentiate between the two file storage areas.
[4.0] 1 [2]

Scheme: Differences 4M

Solution

3. Demonstrate with code snippet writing and reading data from the file of Internal Storage of an
android device.

[10.0] 1 [3]
Scheme: Writing 5M + Reading 5M

Solution

Write File:
private void writeToFile(String data,Context context) {

 try {

 OutputStreamWriter outputStreamWriter = new

OutputStreamWriter(context.openFileOutput("config.txt", Context.MODE_PRIVATE));

 outputStreamWriter.write(data);

 outputStreamWriter.close();

 }

 catch (IOException e) {

 Log.e("Exception", "File write failed: " + e.toString());

 }

}

Read File:

private String readFromFile(Context context) {

 String ret = "";

 try {

 InputStream inputStream = context.openFileInput("config.txt");

 if (inputStream != null) {

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

 String receiveString = "";

 StringBuilder stringBuilder = new StringBuilder();

 while ((receiveString = bufferedReader.readLine()) != null) {

 stringBuilder.append("\n").append(receiveString);

 }

 inputStream.close();

 ret = stringBuilder.toString();

 }

 }

 catch (FileNotFoundException e) {

 Log.e("login activity", "File not found: " + e.toString());

 } catch (IOException e) {

 Log.e("login activity", "Can not read file: " + e.toString());

 }

 return ret;

}

4a. Define Shared Preferences. Differentiate between Shared Preferences and Saved Instance
State.

[5.0] 1 [2]
Scheme: Definition 2M + Differences 3M

Solution
Shared preferences

Using shared preferences is a way to read and write key-value pairs of information
persistently to and from a file.

Files:

Android uses a file system that's similar to disk-based file systems on other platforms such as

Linux. File-based operations the java.io package. All Android devices have two file storage
areas: "internal" and "external" storage. These names come from the early days of Android, when
most devices offered built- in non-volatile memory (internal storage), plus a removable storage
medium such as a micro SD card (external storage).

Shared preferences Vs Saved instance state.

4b. Demonstrate with Code Snippet the usage of Shared Preferences.
[5.0] 1 [3]

Scheme: Code + explanation: 5M

Solution
Internal storage
You don't need any permissions to save files on the internal storage. Your application always has
permission to read and write files in its internal storage directory.
You can create files in two different directories:

• Permanent storage: getFilesDir()

• Temporary storage: getCacheDir() .

Recommended for small, temporary files totalling less than 1MB. Note that the system may
delete temporary files if it runs low on memory. To create a new file in one of these directories,
you can use the File() constructor, passing the File provided by one of the above methods that
specifies your internal storage directory.

For example:

File file = new File(context.getFilesDir(), filename);

Alternatively, you can call openFileOutput() to get a FileOutputStream that writes to a
file in your internal directory. For example, here's how to write some text to a file:

String filename = "myfile";

String string = "Hello world!";

FileOutputStream outputStream;

try {

 outputStream = openFileOutput(filename, Context.MODE_PRIVATE);

 outputStream.write(string.getBytes());

 outputSteam.close();

}catch (Exception e)

{

e.printStackTrace();

}

5a. Define and List the Characteristics of SQLite database. Justify why SQLite database is better
option of Storing the data over other Databases.

[6.0] 1 [2]
Scheme: Characteristics 3M + Justification 3M

Solution
SQLite:
SQLite is a software library that implements SQL database engine that is:

• self-contained (requires no other components)

• serverless (requires no server backend)

• zero-configuration (does not need to be configured for your application)

• transactional (changes within a single transaction in SQLite either occur completely

or not at all)

SQLite Database
Of the many storage options discussed, using a SQLite database is one of the most versatile, and
straightforward to implement.

An SQLite database is a good storage solution when you have structured data that you
need to store persistently and access, search, and change frequently.

You can use the database as the primary storage for user or app data, or you can use it to
cache and make available data fetched from the cloud.

If you can represent your data as rows and columns, consider a SQLite database.

Content providers, which will be introduced in a later chapter, work excellently with
SQLite databases

When you use an SQLite database, represented as an SQLiteDatabase object, all interactions
with the database are through an instance of the SQLiteOpenHelper class which executes your
requests and manages your database for you. Your app should only interact with the
SQLiteOpenHelper.

5b. With an Example explain the queries for Android SQLite.
[4.0] 1 [1]

Scheme: Elaboration 4M

Solution
Query language
You use a special SQL query language to interact with the database. Queries can be very
complex, but the basic operations are

inserting rows
deleting rows
updating values in rows

Android, the database object provides convenient methods for inserting, deleting, and
updating the database. You only need to understand SQL for retrieving data.

Query structure

A SQL query is highly structured and contains the following basic parts:
 SELECT word, description FROM WORD_LIST_TABLE WHERE word="alpha"

Generic version of sample query:

• SELECT columns FROM table WHERE column="value"

Parts:

• SELECT columns—select the columns to return. Use * to return all columns.

• FROM table—specify the table from which to get results.

• WHERE—keyword for conditions that have to be met.

• column="value"—the condition that has to be met. common operators: =, LIKE, <, >

• AND, OR—connect multiple conditions with logic operators.

• ORDER BY—omit for default order, or specify ASC for ascending, DESC for retrieving

rows that meet given criteria descending. LIMIT is a very useful keyword if you want to
only get a limited number of results.

6. What is a Cursors? Explain processing of Cursors with an example.
[10.0] 1 [2]

Scheme: Description 3M + Explanation 7M

Solution
Cursors:
Queries always return a Cursor object. A Cursor is an object interface that provides random read-
write access to the result set returned by a database query. It points to the first element in the
result of the query. A cursor is a pointer into a row of structured data. You can think of it as a
pointer to table rows.

The Cursor class provides methods for moving the cursor through that structure, and methods to
get the data from the columns of each row. When a method returns a Cursor object, you iterate
over the result, extract the data, do something with the data, and finally close the cursor to
release the memory.

 The Cursor class has a number of subclasses that implement cursors for specific types of data.
• SQLiteCursor exposes results from a query on a SQLiteDatabase. SQLiteCursor is not

internally synchronized, so code using a SQLiteCursor from multiple threads should

perform its own synchronization when using the SQLiteCursor.

• MatrixCursor is an all-rounder, a mutable cursor implementation backed by an array

of objects that automatically expands internal capacity as needed. Some common
operations on cursor are:

• getCount() returns the number of rows in the cursor.

• getColumnNames() returns a string array holding the names of all of the columns in

the result set in the order in which they were listed in the result.

• getPosition() returns the current position of the cursor in the row set.

• Getters are available for specific data types, such as getString(int column) and

getInt(int column).

• Operations such as moveToFirst() and moveToNext() move the cursor.

• close() releases all resources and makes the cursor completely invalid. Remember to

call close to free resources!

Processing cursors:

When a method call returns a cursor, you iterate over the result, extract the data, do something

with the data, and finally, you must close the cursor to release the memory. Failing to do so can

crash your app when it runs out of memory.

The cursor starts before the first result row, so on the first iteration you move the cursor to the

first result if it exists. If the cursor is empty, or the last row has already been processed, then the

loop exits. Don't forget to close the cursor once you're done with it. (This cannot be repeated too

often.)

// Perform a query and store the result in a Cursor Cursor cursor = db.rawQuery(...);

try {

while (cursor.moveToNext()) {

// Do something with the data }

} finally {

cursor.close();}

