Scheme of Evaluation
Internal Assessment Test 3 — July 2021

rrrrrrrrrrrrrrrr

oooooooooooooooooo

Sub:

Cloud Computing and its Application

Code:

18CS643

Date: | 30/07/2021 Duration: | 90mins Marks: | 50

Max Sem:

VI Branch:

ISE

Note: Answer Any five full questions.

Question
#

Description

Marks Distribution

Max
Marks

a)

The hospital wants to set up remote ECG monitoring
service. Describe how cloud computing technology can
be applied to remote ECG monitoring. Explain with
proper diagram.

Diagram

Explanation

3M
M

6M

10M

b)

Compare and contrast Azure and AWS.

Any 4 differences

1M*4
4M

4M

a)

Explain the SQL Azure architecture with neat diagram.
Diagram- 3M
Explanation-3M

6M 6M

b)

Categorize the following AWS services in the compute,
storage, communication and other services category
a) AMI b) S3 ¢) EC2 d)Amazon EBS e) SimpleDB

f) Virtual Private Network g) CloudWatch h) Simple
Queue Service

0.5M*8
4M

10M

a)

Discuss the storage services provided by AWS.
S3, EBS ,Elasticache, SimpleDB, RDS,CloudFront

IM*6 6M

b)

Explain how cloud computing is used in media
application with neat diagram (Any one application).

Animoto / Maya Rendering
Diagram

Explanation

4M
M
M

10M

b)

Compare Local Thread and Aneka thread (Draw
diagrams wherever required)

Interface compatibility — M
Thread Life Cycle- M
Thread Synchronization- M 10M
2M
Thread Priorities-
. . . 2M
Thread Serialization-
a) A company needs to develop the technique for the
parallel computation. Analyze the different techniques
that company can use to parallelize computations?
Draw neat diagrams wherever required. 6M
Domain Decomposition 3M
Functional Decomposition M
. . . . 10M
b) Define Task. Explain the computing categories that
relate to task. M
Task M A
High Performance Computing 1M M
High Throughput Computing 1M
Many Task Computing
a) Explain the MPI reference scenario and MPI
programming structure with the required diagram.
MPI reference scenario Diagram M 6M
2M
MPI Program Structure
. 2M
Explanation
b) Explain the Task Programming Model with neat
diagram.
Diagram M AM
2M

Explanation

Scheme Of Evaluation

Internal Assessment Test 3 — July 2021

Sub: Cloud Computing and its Application Code: 18CS643
Max
Date: | 30/07/2021 | Duration: | %0mins | Marks: | 50 | Sem: | VI |~ Branch: ISE

Note: Answer Any full five questions

Q. 1 The hospital wants to set up remote ECG monitoring service. Describe how cloud computing

technology can be applied to remote ECG monitoring. Explain with proper diagram.

Healthcare: ECG analysis in the cloud

Healthcare is a domain in which computer technology has found several and diverse applications: from

supporting the business functions to assisting scientists in developing solutions to cure diseases.
An illustration of the infrastructure and model for supporting remote ECG monitoring is shown in Figure 10.1.
Wearable computing devices equipped with ECG sensors constantly monitor the patient’s heartbeat. Such
information is transmitted to the patient’s mobile device, which will eventually forward it to the cloud-hosted
Web service for analysis.

/—{ User}

Embedded Bluetooth
Enabled
Data Communication &
Processor Module

ECG Sensor Module |

FIGURE 10.1

Large

Number

4
7]
g
£
3 .
i 4 >
a ECG Data Analysis)
(g as a Service
Dynamically Scalable]
) Runtime Security)
@ | (QoS-based scaling of Runtime
o computing resources) /
s _— N)
LLLL p B
§ . amazon §3 '@
(s)

An online health monitoring system hosted in the cloud.

The Web service forms the front-end of a platform that is hosted in cloud and leverages three layers of cloud
computing stack: SaaS, PaaS, and IaaS.

The Web service constitute SaaS application that will store ECG data in the Amazon S3 service and issue a
processing request to the scalable cloud platform.

The runtime platform is composed of a dynamically sizable number of instances running the workflow engine
and Aneka.

The number of workflow engine instances is controlled according to the number of requests in the queue of
each instance, while Aneka controls the number of EC2 instances used to execute the single tasks defined by
the workflow engine for a single ECG processing job.

Advantages

1. The elasticity of cloud infrastructure that can grow and shrink according to the requests served. As a result,
doctors and hospitals do not have to invest in large computing infrastructures designed after capacity planning,
thus making more effective use of budgets.

2. Ubiquity. Cloud computing technologies are easily accessible and promise to deliver systems with minimum
or no downtime. Computing systems hosted in cloud are accessible from any Internet device through simple
interfaces (such as SOAP and REST-based Web services). This makes systems easily integrated with other
systems maintained on hospital’s premises.

3. Cost savings. Cloud services are priced on a pay-per-use basis and with volume prices for large numbers of

service requests.

Q.1 b) Compare and contrast Azure and AWS

AZURE

Azure is the public cloud platform
for Microsoft.

Microsoft has had a bad relationship
with the open source community.

Azure excels in the Hybrid Cloud
space allowing companies to
integrate onsite servers with cloud
instances.

Azure has a lesser reach when
it comes to Government cloud
offerings.

As an enterprise-grade cloud
computing platform, Azure has a
strong global presence spanning

over 36 regions all around the world.

Microsoft provides a less flexible
pricing model.

VERSUS

AWS

AWS is an on-demand cloud
computing platform for Amazon.

Amazon has been friendly with the
open source model from the start.

AWS is still looking to strengthen its
offerings to support Hvbrid Clouds.

AWS has a little edge over Azure
in terms of (:;‘q-»\'emment cloud
offerings.

Amazon is more about numbers
than geographic expansion with
AWS regions worldwide.

Amazon offers a more flexible
pricing model.

Q. 2 a) Explain the SQL Azure architecture with neat diagram.

QRHTTPIREST

| PHE] [saL Sarvar Applicatons and Tooss | [WCF Data Services
(ODBC J E ADONET
L Tabular Data Stream (TDS) J
ims + Sacure Socket Layer
" Services Layer
[Provisioning] ‘ Provisioning] | Provisioning |
[Billng and Metering] [Billing and Metering] [Billng and Metering]
[_Connecﬁon Routing] |_éomection Routing I I Connection Routing |
Platform Layer
| SOL Server J [sQL Server | | SQL Server J
| saLAare Fabric |« | SQLAzure Fabric |« | SQL AzureFabric | « .
Management Management | Management
Services Services | Services
! ! Y

Infrastructure Layer

FIGURE 5.4
SGL Azure architecture.

SQL Azure

SQL Azure is a relational database service hosted on Windows Azure and built on the SQL Server
technologies. The service extends the capabilities of SQL Server to the cloud and provides developers with a
scalable, highly available, and fault-tolerant relational database. SQL Azure is accessible from either the
Windows Azure Cloud or any other location that has access to the Azure Cloud. It is fully compatible with the
interface exposed by SQL Server, so applications built for SQL Server can transparently migrate to SQL Azure.
Figure 9.4 shows the architecture of SQL Arure. Access to SQL Azure is based on the Tabular Data Stream
(TDS) protocol, which is the comnmmication protocol underlying all the different inferfaces used by
applications to connect to a SQL Server-based installation such as ODBC and ADONET.

Developers have to sign up for a Windows Arzure account in order to use SQL Azure. Once the account is
activated, they can either use the Windows Azure Management Portal or the REST APIs to create servers and
logins and to configure access o servers.

SQL Azure servers are abstractions that closely resemble physical SQL Servers: They have a fully qualified
domain name under the database windowsnet (ie., server-name database windows nef) domain name. This
simplifies the management tasks and the interaction with SQL Azure from client applications.

Currently, two different editions are available: Web Edition and Business Edition The former is suited for
small Web applications and supports databases with a maxinmm size of 1 GB or 5 GB. The latter is suited for
independent software vendors, line-of-business applications, and enterprise applications and supports databases
with a masxinmm size from 10 GB to 50 GB, in increments of 10 GB.

Q. 2 b) Categorize the following AWS services in the compute, storage, communication and other
services category

a) AMI b) S3 ¢) EC2 d)Amazon EBS e) SimpleDB f) Virtual Private Network g) CloudWatch h) Simple
Queue Service

a) AMI- Compute Service

b) S3-storage service

c¢) EC2-Compute Service

d) EBS- storage service

e) SimpleDB- Storage Service

f) Virtual Private Network-communication service
g) CloudWatch-Additional services

h) Simple Queue Service- communication service

Q. 3a) Discuss the storage services provided by AWS.

Storage services
The core service is represented by Amazon Simple Storage Service (53). This is a distributed object store that
allows users to store informaftion in different formats. The core components of S3 are fwo: buckets and objects.
Buckets represent virtual containers in which to store objects; objects represent the content that is actually
stored. Objects can also be enriched with metadata that can be used to tag the stored content with additional
information.
1 53 key concepts
2 Amazon elastic block store
3 Amazon ElastiCache
4 Structured storage solutions
5 Amazon CloudFront

Amazon 53 allows controlling the access to buckets and objects by means of Access Conirol Policies (ACPs).
An ACP is a set of grant permissions that are aftached to a resource expressed by means of an XML
configuration file.

A policy allows defining up to 100 access miles, each of them granting one of the available permissions to a

grantee.

1 53 key concepts
53 has been designed to provide a simple storage service that’s accessible through a Representfational State
Transfer (REST) interface.

The storage is organized in a two-level hierarchy.

+ 5Stored objects cannot be manipulated like standard files.

o Content is not immediately available to users.

o Requests will occasionally fail.
Access to 53 is provided with RESTul Web services. These express all the operations that can be performed on
the storage in the form of HTTP requests (GET. PUT, DELETE, HEAD, and POST).
Resource naming
Buckets, objects, and attached metadata are made accessible through a REST interface. Therefore, they are
represented by uniform resource identifiers (LJRIs) under the s3 amazonaws.com domain.

Amaron offers three different ways of addressing a bucket:

1. Canonical form: hftp://s3. amazonaws.combukect name/

2. Subdomain form: http:/bucketname s3 amazon com/

3. Virtual hosting form: http.//bucket-name com/

Buckets

A bucket is a container of objects. It can be thought of as a virtual drive hosted on the 53 distributed storage,
which provides users with a flat store to which they can add objects. Buckets are top-level elements of the 53
storage archifecture and do not support nesting. That 1s, it 15 not possible to create “subbuckefs™ or other kinds
of physical divisions.

Objects and metadata

Objects constitute the content elements stored in 53. Users either store files or push to the 53 text stream
representing the object’s confent. An object is identified by a name that needs to be unique within the bucket in
which the content is stored. The name cannot be longer than 1,024 bytes when encoded in UTF-8, and it allows
almost any character. Buckets do not support nesting.

Access control and security

2 Amazon elastic block store

The Amazon Elastic Block Store (EBS) allows AWS users to provide EC2 instances with persistent storage in
the form of volumes that can be mounted at instance startup. They accommodate up to 1 TB of space and are
accessed through a block device interface, thus allowing users to format them according to the needs of the
instance they are connected to.

EBS volumes normally reside within the same availability zone of the EC2 instances that will use them to
maximize the 'O performance. It is also possible to connect volumes located in different availability zones.
Once mounted as volumes, their content is lazily loaded in the background and according to the request made
by the operating system. This reduces the number of I'O requests that go fo the network.

3 Amazon ElastiCache

ElastiCache is an implementation of an elastic in-memory cache based on a cluster of EC2 instances.

It provides fast data access through a Memcached-compatible protocol so that applications can transparently
migrate to ElastiCache.

ElastiCache is based on a cluster of EC2 instances mnning the caching software, which is made available
through Web services.

An FlastiCache cluster can be dynamically resized according to the demand of the client applications.

4 Structured storage solutions

Amazon provides applications with structured storage services in three different forms:

» Preconfigured EC2 AMIs,

o Amazon Relational Data Storage (RDS), and

o Amazon SimpleDB.

Preconfigured EC2 AMIs are predefined templates featuring an installation of a given database management
system. EC2 instances created from these AMIs can be completed with an EBS volume for storage persistence.
Awvailable AMIs include installations of IBM DB2, Microsoft SQL Server, My5SQL. Oracle, PostgreSQL,
Sybase, and Vertica.

RDS is relational database service that relies on the EC2 infrastructure and is managed by Amarzon Developers
do not have to worry about configuring the storage for high awvailability, designing failover strategies, or
keeping the servers up-to-date with patches. Moreover, the service provides users with automatic baclups,
snapshots, point-in-time recoveries, and facilities for implementing replications.

Amazon SimpleDB is a lightweight, highly scalable, and flexible data storage solution for applications that do
not require a fully relational model for their data. SimpleDB provides support for semistructured data, the
model for which is based on the concept of domams, items, and attributes.

SimpleDB uses domains as top-level elements to organize a data store. These domains are roughly comparable
to tables in the relational model Unlike tables, they allow items not to have all the same column structure; each
item is therefore represented as a collection of attributes expressed in the form of a key-value pair.

5 Amazon CloudFront

CloudFront is an implementation of a confent delivery network on top of the Amazon distnbuted storage
infrastructure. It leverages a collection of edge servers strategically located around the globe to better serve
requests for static and streaming Web content so that the transfer time is reduced.

AWS provides users with simple Web service APIs to manage CloudFront. To make available content through
CloudFront, it is necessary to create a distribution. This identifies an origin server, which contains the original
version of the content being distributed, and it is referenced by a DNS domain under the Cloudfront net domain
name.

Q. 3 b) Explain how cloud computing is used in media application with neat diagram (Any one
application).

1 Animoto

Animoto is the most popular example of media applications on the cloud. The Website provides users with a
very straightforward interface for quickly creating videos out of images, music, and video fragments submitted
by users. Users select a specific theme for a video, upload the photos and videos and order them in the sequence
they want to appear, select the song for the mmusic, and render the video. The process is executed in the
background and the user is notified via email once the video is rendered.

A proprietary artificial intelligence (AT) engine, which selects the animation and transition effects according to
pictures and music, drives the rendering operation Users only have to define the storyboard by organizing
pictures and videos into the desired sequence.

The infrastructure of Animoto is complex and is composed of different systems that all need to scale { Figure
10.8). The core function is implemented on top of the Amazon Web Services infrastructure. It uses Amazon
EC2 for the Web front-end and worker nodes; Amazon 53 for the storage of pictures. mmsic, and videos; and
Amazon 5QS for connecting all the components.

The system’s auto-scaling capabilities are managed by Rightscale, which monitors the load and controls the
creation of new worker instances.

e o

g SCOLE.
— - Owad Mwagemust Rutues 4 EC2 instances:
o . Y sl 4 : web front end
a . - Scalability engine
. r Y
Amazon SQ8)i
e > ’

.hbi “‘ ~ " “‘Ei ! q :
e ¥ ; i T {
Amazon S3: [ECZ nstances: video rcndenml'
Video storage :

FIGURE 10.8
Animato reference architecture,

Q. 4 a) Compare Aneka thread with Local thread. (Draw diagrams wherever required).

Aneka thread vs. common threads
To efficiently run on a distributed infrastructure, Aneka threads have certain limitations compared to local
threads.
These limitations relate to the communication and synchronization strategies.
1 Interface compatibility
2 Thread life cycle
3 Thread synchronization
4 Thread priorities
5 Type serialization

1 Interface compatibility

The Aneka.Threading. AnekaThread class exposes almost the same interface as the System.Threading Thread
class with the exception of a few operations that are not supported. Table 6.1 compares the operations that
are exposed by the two classes.

Table 6.1 Thread APl Comparison
.Net Threading API

Aneka Threading API

System. Threading Aneka. Threading

Thread AnekaThread

Thread.ManagedThreadld (irt) AnekaThread.ld (string)

Thread.Name AnekaThread Name

Thread. ThreadState (ThreadStats) AnekaThread. State

Thread./sAlve Aneka Thread. isAlive

Thread.lsRunning Aneka Thread.ls Running
Thread.lsBackground Aneka Thread.lsBackground|fase]
Thread. Prionty Aneka Thread. Priorty ThreadBriority.Nomal]
Thread.lsThreadFPoolT hread Aneka Thread.is ThreadPoolThread [false]
Thread. Start AnekaThread. Start

Thread.Abort Aneka Thread. Abort

Thread. Sleep [Nat provided]

Thread.imerrupt [Mot provided]

Thread.Suspend [Mot provided)

Thread.Resume [Mot provided]

Thread. Jaoin Aneka Thread. doir

The basic control operations for local threads such as Start and Abort have a direct mapping, whereas
operations that involve the temporary interruption of the thread execution have not been supported.

The reasons for such a design decision are twofold. First, the use of the Suspend/Resume operations is
generally a deprecated practice, even for local threads, since Suspend abruptly interrupts the execution state
of the thread. Second, thread suspension in a distributed environment leads to an ineffective use of the
infrastructure, where resources are shared among different tenants and applications.

Sleep operation i1s not supported. Therefore, there 1s no need to support the Interrupt operation, which
forcibly resumes the thread from a waiting or a sleeping state.

2 Thread life cycle

Aneka Thread life cycle is different from the life cycle of local threads. It is not possible to directly map the
state values of a local thread to Aneka threads. Figure 6.6 provides a comparative view of the two life cycles.
The white balloons in the figure indicate states that do not have a corresponding mapping on the other life
cycle; the shaded balloons indicate the common states.

In local threads most of the state transitions are controlled by the developer, who actually triggers the state
transition by invoking methods. Whereas inAneka threads, many of the state transitions are controlled by the
muddleware.

Stagingin

a. System Threading.Threadlife cycle. b. Aneka Threading AnekaThreadlife cycle.

FIGURE 6.6

Thread life-cycle comparison.

Aneka threads support file staging and they are scheduled by the middleware, which can queue them for a
considerable amount of time.

An Aneka thread is initially found in the Unstarted state. Once the Start() method is called, the thread transits
to the Started state, from which 1t 1s possible to move fo the StagingIn state if there are files to upload for 1fs
execution or directly to the Queued state. If there is any error while uploading files, the thread fails and it
ends ifs execution with the Failed state, which can also be reached for any exception that occurred while
invoking Start().

Another outcome mught be the Rejected state that occurs 1f the thread is started with an invalid reservation
token. This 1s a final state and implies execution failure due to lack of rights.

Once the thread is in the queue, if there is a free node where to execute it, the middleware moves all the
object data and depending files to the remote node and starts its execution, thus changing the state into
Running.

If the thread penerates an exception or does not produce the expected oufput files, the execution is
considered failed and the final state of the thread is set to Failed. If the execution is successful, the final state
1s set to Completed. If there are output files to retrieve, the thread state 1s set to StagingOut while files are
collected and sent fo their final destination.

At any point, if the developer stops the execution of the application or directly calls the Abort() method, the
thread 1s aborted and 1ts final state 1s set to Aborted.

3 Thread synchronization

The NET base class libraries provide advanced facilities to support thread synchronization by the means of
monitors, semaphores, reader-writer locks, and basic synchronization constructs at the language level. Aneka
provides minimal support for thread synchromization that is linuted to the implementation of the join
operation for thread abstraction.

This requirement 1s less stringent in a distributed environment, where there 1s no shared memory among the
thread instances and therefore it is not necessary.

Providing coordination facilities that introduce a locking strategy mn such an environment might lead to
distributed deadlocks that are hard to detect. Therefore, by design Aneka threads do not feature any
synchronization facility except join operation.

4 Thread priorities

The System Threading Thread class supports thread priorities, where the scheduling priority can be one
selected from one of the values of the ThreadPriornty enumeration: Highest, AboveNormal, Normal,
BelowNormal, or Lowest.

Aneka does not support thread priorities, the Aneka Threading Thread class exhibits a Priority property
whose type i1s ThreadPriority, but its value is always set to Normal, and changes to it do not produce any
effect on thread scheduling by the Aneka middleware.

5 Type serialization

Serialization is the process of converting an object info a stream of bytes to store the object or transnut 1f to
memory, a database, or a file. Mamn purpose 1s to save the state of an object to recreate it when needed. The
reverse process is called deserialization.

Local threads execute all within the same address space and share memory; therefore, they do not need
objects to be copied or transferred into a different address space. Aneka threads are distributed and execute
on remote computing nodes, and this implies that the object code related to the method to be executed within
a thread needs to be transferred over the network.

A NET type is considered serializable if it is possible to convert an instance of the type into a binary array
containing all the information required to revert 1t to its original form or into a possibly different execution
context. This property is generally given for several types defined in the NET framework by simply tagging
the class defimition with the Serializable attribute.

Aneka threads execute methods defined in serializable types, since it is necessary to move the enclosing
mstance to remote execution method. In most cases, providing serialization 1s as easy as tagging the class
defimtion with the Serializable attribute; in other cases 1t nught be necessary to implement the ISenializable
mterface and provide appropriate constructors for the type.

Q. 5a) A company needs to develop the technique for the parallel computation. Analyze the different
techniques that company can use to parallelize computations? Draw neat diagrams wherever required.

Techniques for parallel computation with threads
Developing parallel applications requires an understanding of the problem and its logical structure.
Decomposition is a useful technique that aids in understanding whether a problem is divided into
components (or tasks) that can be executed concurrently. it allows the breaking down into independent units
of work that can be executed concurrently with the support provided by threads.
1 Domain decompaosition
2 Functional decomposition
3 Computation vs. Communication

1 Domain decomposition
Domain decomposition 1s the process of identifying patterns of functionally repetitive, but independent,
computation on data. This is the most common type of decomposition in the case of throughput computing,
and it relates to the identification of repetitive calculations required for solving a problem. The master-slave
model is a quite common organization for these scenarios:

* The system is divided into two major code segments.

* One code segment contains the decomposition and coordination logic.

* Another code segment contains the repetitive computation to perform.

A master thread executes the first code segment.

As a result of the master thread execution, as many slave threads as needed are created to execute

the repetitive computation.

* The collection of the results from each of the slave threads and an eventual composition of the final

result are performed by the master thread.
Embarrassingly parallel problems constitute the easiest case for parallelization because there 1s no need to
synchronize different threads that do not share any data. Embarrassingly parallel problems are quite
common, they are based on the strong assumption that at each of the iterations of the decomposition method,
it is possible to isolate an independent unit of work. This is what makes it possible to obtain a high
computing throughput. If the values of all the iterations are dependent on some of the values obtamed i the
previous iterations, the problem is said to be inherently sequential. Figure 6.3 provides a schematic
representation of the decomposition of embarrassingly parallel and inherently sequential problems.
The mafrix product computes each element of the resulting matrix as a linear combination of the
corresponding row and column of the first and second input matrices, respectively. The fornmla that applies
for each of the resulting matrix elements 1s the following:

n—1
Cy=) AuBy
k=0

Two conditions hold in order to perform a matrix product:
e Input matrices must contain values of a comparable nature for which the scalar product is defined.

e The number of columns in the first matrix must match the number of rows of the second matrix.

(Frogems] 1 E0O0O0O00) ™

..
L L)
.. 1000000 |-

a. Embarrassingly pamliel

- Units of work]

1 Process |

'+ Result |

b. Inherently sequential

FIGURE 6.3
Domain decomposition technigues.

Figure 6.4 provides an overview of how a matrix product can be performed.

2 Functional decomposition

Funetional decomposition is the process of identifying functionally distinet but independent computations.
The focus here is on the type of computation rather than on the data manipulated by the computation.

This kind of decomposition 15 less common and does not lead to the creation of a large number of threads,
since the different computations that are performed by a single program are limited.

Functional decomposition leads to a natural decomposition of the problem in separate units of work.
Figure 6.5 provides a pictorial view of how decomposition operates and allows parallelization.

i CLOUD COMPUTIN

. | Units of work |
~{ Process }

| | fom [Ohtz} |y Resi]}
s= 1O =
//) /\

PARS S8 | [Onit3}., {Unitd |

OL

FIGURE 6.5
Functional decomposition.

The problems that are subject to functional decomposition can also require a composition phase in which the
outcomes of each of the independent units of work are composed together.

In the following, we show a very simple example of how a mathematical problem can be parallelized using
functional decomposition. Suppose, for example, that we need to calculate the wvalue of the following

function for a given value of x:
f(x) = sin(x) + cos(x) + tan(x)

Once the value of x has been set, the three different operations can be performed independently of eachother.
This is an example of functional decomposition because the entire problem can be separated into three
distinct operations. A possible implementation of a parallel version of computation is shown in Listing 6.3.

Q. 5 b) Define Task. Explain the computing categories that relate to task.

Computing categories
These categories provide an overall view of the characteristics of the problems. They implicitly impose
requirements on the mfrastructure and the middleware.
Applications falling into this category are:
1 High-performance computing
2 High-throughput computing
3 Many-task computing

1 High-performance computing
High-performance computing (HPC) 1s the use of distributed computing facilities for solving problems that
need large computing power.

The general profile of HPC applications is constituted by a large collection of compute-intensive tasks that need
fo be processed in a short pertod of tume.
The metrics to evaluate HPC systems are floating-point operations per second (FLOPS), now tera-FLOPS or
even peta-FLOPS, which identify the number of floating- point operations per second.
Ex: supercomputers and clusters are specifically designed to support HPC applications that are developed to
solve “Grand Challenge™ problems in science and engineering.

2 High-throughput computing
High-throughput computing (HTC) is the use of distributed computing facilities for applications requiring large
computing power over a long period of time.
HTC systems need to be robust and to reliably operate over a long time scale.
The general profile of HTC applications 1s that they are made up of a large number of tasks of which the
execution can last for a considerable amount of fime.
Ex: scientific simulations or statistical analyses.
It 1s quite common to have independent tasks that can be scheduled in distributed resources because they do not
need to communicate.
HTC systems measure their performance in ferms of jobs completed per month.

3 Many-task computing
MTC denotes high-performance computations comprising multiple distinet activities coupled via file system
operations.
MTC is the heterogeneity of tasks that might be of different nature: Tasks may be small or large, single-
processor or multiprocessor, compute-intensive or data-intensive, static or dynanuc, homogeneous or
heterogeneous.
MTC applications includes loosely coupled applications that are communication-intensive but not naturally
expressed using the message-passing interface.
It aims to bridge the gap between HPC and HTC. MTC is simular to HTC, but it concentrates on the use of
many compufing resources over a short period of fime fo accomplish many computational tasks.

Q. 6 a) Explain the MPI reference scenario and MPI programming structure with the required diagram.

MPI applications
Message Passing Interface (MPI) 1s a specification for developmg parallel programs that communicate by
exchanging messages.
MPI has originated as an attempt to create common ground from the several distributed shared memory and
message-passing mfrastructures available for distributed computing. Now a days, MPI has become a de facto
standard for developing portable and efficient message-passing HPC applications.

MPI provides developers with a set of routines that:
= Manage the distributed environment where MPI programs are executed
* Provide facilities for point-to-point communication
» Provide facilities for group communication
* Provide support for data structure definition and memory allocation
» Provide basic support for synchronization with blocking calls

The general reference architecture is depicted in Figure 7.4. A distributed application in MPI 1s composed of a
collection of MPI processes that are executed in parallel in a distributed infrastructure that supports MPL

‘
. .
N 7
/
i -
N P
3 @ ’,| Group B
3 .
' -
b =
d

“~{ CommunicatorA |--~""

FIGURE 7.4

MPI rafaranca scanario

(R IR Ll AR B i T RS TR

MPI applications that share the same MPI runfime are by default as part of a global group called
MPI COMM WORLD. Within this group, all the distributed processes have a unique identifier that allows
the MPI runtime to localize and address them
Each MPI process is assigned a rank within the group.
The rank 1s a unique 1dentifier that allows processes to communicate with each other within a group.

To create an MPI application it 15 necessary to define the code for the MPI process that will be
executed m parallel. This program has, in general, the structure described in Figure 7.5.
The section of code that is executed in parallel is clearly identified by two operations that set up the MPI
environment and shut 1t down, respectively.
In the code section, it is possible to use all the MPI functions to send or receive messages in either
asynchronous or synchronous mode.
The diagram in Figure 7.5 mught suggest that the MPI might allow the definition of completely symmetrical
applications, since the portion of code executed in each node is the same.
A common model used in MPI is the master-worker model, where by one MPI process coordinates the
execution of others that perform the same task.
Once the program has been defined in one of the available MPI implementations, it is compiled with a modified
version of the compiler for the language.
The output of the compilation process can be run as a distributed application by using a specific tool
provided with the MPT implementation.
One of the most popular MPI software environments 1s developed by the Argonne National Laboratory m
the United States.

T——_— [MPI Include File]
Section I
: [Prototypes Declaration]

DoWork | ([Senal Godo)

......................

!
i
Couke i Do Work and Message l Parallel
S i Passing | Code
i

- il

MPI Environment Shutdown

[
: Do Work | Serial Code |
.

FIGURE 7.5
MPI program structure.

Q. 6 b) Explain the Task Programming Model with neat diagram.

Task programming model
The Task Programming Model provides a very infuitive abstraction for quickly developing distributed
applications on top of Aneka.
It provides a minimmum set of APIs that are mostly centered on the Aneka Tasks ITask interface.
Figure 7.8 provides an overall view of the components of the Task Programming Model and their roles during
application execution.

2

S
<| TaskManager i---

.
H .
i ‘ H
: O Taskt : ITask | : P ND
{ >]

! . | Task2 : ITask ' 3\
i AneckaTask .

....................

-

-

FIGURE 7.8
Task programming model scenario,

Developers create distributed applications in terms of ITask instances, the collective execution of which
describes a running application.

These tasks, together with all the required dependencies (data files and libraries), are grouped and managed
through the Aneka Application class, which is specialized to support the execution of tasks.

Two other components, AnekaTask and TaskManager, constitute the client-side view of a task-based
application. The former constitutes the runtime wrapper Aneka uses to represent a task within the middleware;
the latter 1s the underlying component that interacts with Aneka, submuts the tasks, monitors their execution,
and collects the results.

In the middleware, four services coordinate their activities inorder to execute task-based applications. These
are MembershipCatalogue, TaskScheduler, ExecutionService, and StorageService.

MembershipCatalogue constitutes the main access point of the cloud and acts as a service directory to locate
the TaskScheduler service that 1s incharge of managing the execution of task-based applications.

Its main responsibility i1s fo allocate task instances to resources featuring the Execution Service for task
execution and for monitoring task state.

