USN					

Internal Assessment Test 3 – July 2021

Sub:	Data Mining an	nd Data warel		1 / 135C3SITICIT		Sub Code:	18CS641/17 CS651	Branch	: ISE		
Date:	30/07/2021	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI A,B&C	l	ı	OE	BE
	Answer any FIVE FULL Questions					M	ARKS		RBT		
1	Discuss about various alternate methods for generating frequent itemsets with					[10]	CO3	L2			
	diagrams				. •	_		_			
	Traversal of		_	_			_	_			
		=		an be concept	ually	viewed as	a traversal or	n the			
		tice shown	_								
				an algorithm			e lattice struc	cture			
	is traverse	d during th	e frequent i	temset genera	tion	process.					
	1. General-to	-	_								
	_	_	_	general-to-spec				pairs			
	of frequen	t (k- l)-iten	nsets are me	erged to obtain	n can	didate k-ite	emsets.				
	 This gene 	ral to-spec	ific search	strategy is e	ffect	ve, provid	ed the maxii	num			
	length of a	a frequent it	temset is no	ot too long.							
	• The confi	guration of	f frequent i	itemsets that	worl	s best with	h this strateg	gy is			
	shown in	Figure 6.19	(a), where t	he darker nod	les re	present infi	requent items	ets.			
	 Alternativ 	ely, a spec	cific to-gen	eral search s	strate	gy looks f	or more spe	cific			
	frequent it	emsets firs	t, before fin	ding the more	e gen	eral freque	nt itemsets.				
	• This stra	tegy is use	eful to dis	cover maxin	nal f	requent it	emsets in d	ense			
		00		nt itemset bor		-					
		, as shown i	-								
			•	plied to prun	e all	subsets of	maximal fred	went			
	_		-	date k-itemse			-	-			
		-		ts of size k - 1			quent,	7 1130			
		•		emset is infr		nt we nee	d to check a	ll of			
	1	ibsets in th			cque	ni, we nee	u to eneck u				
				ine both ger	orol	to epocific	and specifi	a to			
		approach is arch strateg		me bom gen	ici ai-	io-specific	and specifi	C-10-			
		Č		:		a4 a u a 4 la a a					
			-	ires more spa							
		=		ntify the free	quen	nemset t	oruer, given	ı ıne			
	configurat	ion shown	in Figure 6.	.19(C).							
										1	

Figure 6.19. General-to-specific, specific-to-general, and bidirectional search.

Equivalence Classes: [2 marks explanation + 1 mark Diagram]

- Another way to envision the traversal is to first partition the lattice into disjoint groups of nodes (or equivalence classes).
- A frequent itemset generation algorithm searches for frequent itemsets within a particular equivalence class first before moving to another equivalence class.
- As an example, the level-wise strategy used in the Apriori algorithm can be considered to be partitioning the lattice on the basis of itemset sizes; i.e., the algorithm discovers all frequent l-itemsets first before proceeding to largersized itemsets.
- Equivalence classes can also be defined according to the prefix or suffix labels of an itemset.
- In this case, two itemsets belong to the same equivalence class if they share a common prefix or suffix of length k.
- In the prefix-based approach, the algorithm can search for frequent itemsets starting with the prefix a before looking for those starting with prefixes b, c and so on.
- Both prefix-based and suffix-based equivalence classes can be demonstrated using the tree-like structure shown in Figure 6.20.

Figure 6.20. Equivalence classes based on the prefix and suffix labels of itemsets.

Figure 6.21. Breadth-first and depth-first traversals.

Breadth-First versus Depth-First: [2 marks explanation + 1 mark Diagram]

- The Apriori, algorithm traverses the lattice in a breadth-first manner as shown in Figure 6.21(a).
- It first discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets, and so on, until no new frequent itemsets are generated.
- The itemset lattice can also be traversed in a depth-first manner, as shown in Figures 6.21(b) and 6.22.
- The algorithm can start from, say, node a, in Figure 6.22, and count its support to determine whether it is frequent.
- If so, the algorithm progressively expands the next level of nodes, i.e., ab, abc, and so on, until an infrequent node is reached, say, abcd.
- It then backtracks to another branch, say, abce, and continues the search from there.
- The deprth-first approach is often used by algorithms designed to find maximal frequent itemsets.
- This approach allows the frequent itemset border to be detected more quickly than using a breadth-first approach.
- Once a maximal frequent itemset is found, substantial pruning can be performed on its subsets.

- Figure 6.22. Generating candidate itemsets using the depth-first approach.
- A maximal frequent itemset is defined as a frequent itemset for which none of its immediate supersets are frequent.
- For example, if the node bcde shown in Figure 6.22 is maximal frequent, then

ı	the election		AL THE SHIDHEES TOOLED AL DO., DE. C. O. AHO EL			
	•		sit the subtrees rooted at bd,, be, c, d, and e naximal frequent itemsets.			
•	-	•	ent, only the nodes such as ac and bc are not			
		-	es of ac and be may still contain maximal			
	frequent items		50 01 40 414 00 1144 5011 5011411 1141111			
•	•	,	ws a different kind of pruning based on the			
	support of item	= =	1 0			
•	For example, s	suppose the support	for {a,b,c} is identical to the support for {a,			
	b}. The subtr	ees rooted at abd	and abe can be skipped because they are			
	guaranteed not	to have any maxima	al frequent itemsets.			
` ' ~			~	503	000	_
		_	a set. Construct the FP trees by showing the		CO3	L
tre	ess separately af	_	a set. Construct the FP trees by showing the saction. Find the Frequent Itemset using FP		CO3	L
tro gr	ess separately afrowth algorithm.	ter reading each tran	•		CO3	L
tro gr T	ress separately af rowth algorithm. Tree Construc	ter reading each trar ction [5 marks]	saction. Find the Frequent Itemset using FP		CO3	L
tro gr T	ress separately af rowth algorithm. Tree Construc	ter reading each tran	saction. Find the Frequent Itemset using FP		CO3	L
tro gr T	ress separately affrowth algorithm. Tree Constructive Trequent item	ter reading each tranction [5 marks] set generation ITEM	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Constructive Trequent item TID 1	ter reading each transtain [5 marks] set generation ITEM {a, b}	saction. Find the Frequent Itemset using FP		CO3	L
tro gr T	ress separately affrowth algorithm. Tree Constructive TID 1 2	ter reading each transter reading each transter ter each trans	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Construction TID 1 2 3	ter reading each transter reading each transter reading each transter [5] marks] set generation ITEM {a, b} {b, c, d} {a, c, d, e}	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Constructive TID 1 2 3 4	ter reading each transter reading each transter reading each transter [5] marks] set generation ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e}	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Construction TID 1 2 3 4 5	ter reading each transter reading each transter reading each transter [5] marks] set generation ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e} {a, b, c}	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Construction TID 1 2 3 4 5 6	ter reading each transter reading each transter reading each transter [5] marks] set generation ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e}	saction. Find the Frequent Itemset using FP		CO3	I
tro gr T	ress separately affrowth algorithm. Tree Construction TID 1 2 3 4 5	ter reading each transter reading each transter reading each transter [5] marks] set generation ITEM {a, b} {b, c, d} {a, c, d, e} {a, d, e} {a, b, c}	saction. Find the Frequent Itemset using FP		CO3	I

Hunt's Algorithm

In Hunt's algorithm, a decision tree is grown in a recursive fashion by partitioning the training records into successively purer subsets. Let D_t be the set of training records that are associated with node t and $y = \{y_1, y_2, \ldots, y_c\}$ be the class labels. The following is a recursive definition of Hunt's algorithm.

Step 1: If all the records in D_t belong to the same class y_t , then t is a leaf node labeled as y_t .

Step 2: If D_t contains records that belong to more than one class, an attribute test condition is selected to partition the records into smaller subsets. A child node is created for each outcome of the test condition and the records in D_t are distributed to the children based on the outcomes. The algorithm is then recursively applied to each child node.

	binary	catego	rical	uqus class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Construction of the tree: [2 marks]

Figure 4.7. Hunt's algorithm for inducing decision trees.

Explanation: [2 marks]

- The tree, however, needs to be refined since the root node contains records from both classes. The records are subsequently divided into smaller subsets based on the outcomes of the *Home Owner* test condition, as shown in Figure 4.7(b).
- The justification for choosing this attribute test condition will be discussed later.
- For now, we will assume that this is the best criterion for splitting the data at

						1	1	, ,
	this point							
				•	to each child of the root node.			
					notice that all borrowers who	are		
				repaid their loans				
			e root i	s therefore a leaf	f node labeled Defaulted = No (s	see		
	Figure 4.7							
		-		_	plying the recursive step of Hur			
	_			_	he same class. The trees resulting 4.7(a) and (d)	ing		
	110111 eaci	riecursive	step ar	e shown in rigur	es 4.7(c) and (d).			
3h)	Consider the	training ex	zamnles	shown in the tab	ole below for a binary classification	on [3]	CO4	L3
30)					of training examples with respect			
	to the positive							
	1 -	e 4.2. Data	set for l	Exercise 3.				
					1			
	Instance	$\begin{array}{c c} a_1 & a_2 \\ \hline T & T \end{array}$		Target Class				
	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	$\begin{array}{c c} \mathbf{I} & \mathbf{I} \\ \mathbf{T} & \mathbf{T} \end{array}$		+				
	3	T F		+				
	4	F F		+				
	5	FT		_				
	6	FT		_				
	7	FF		_				
	8	T F		+				
	9	FT	5.0	_				
					I			
		-	-	-	ive examples. Thus,			
	P(+) = 4/9 an		_	_				
	The entropy of		_	-				
				= 0.9911. [2 ma				
4a)	_			n tree induction a	algorithm with example dataset.	[8]	CO4	L2
	Algorithm	[4 marl	ks]					
	4.3.5 Al	gorithm	for De	ecision Tree Ir	nduction			
	A skelet	on decision	n tree i	nduction algorith	nm called TreeGrowth is shown			
				_	consists of the training records			
					rks by recursively selecting the			
	best attribu	te to split	the da	ta (Step 7) and ϵ	expanding the leaf nodes of the			
			eleton d	ecision tree indu	ction algorithm.			
	TreeGrowth 1: if stopp:		(F,F) = t	rue then				
	2: leaf =	createNoo	de().					
	3: leaf.la 4: return	bel = Clas leo f	sify(E)	•				
	5: else	ecuj.						
		createNoo	1/					
				$\mathtt{st_split}(E, F).$ outcome of $root.te$	est_cond }.			
	9: for eac	$ch \ v \in V \ dc$	D					
		$d=\{e\mid root.t\}$		$d(e) = v \text{ and } e \in E$	<i>i</i> }.			
					the edge $(root \rightarrow child)$ as v .			
	13: end fo	or						
	14: end if 15: return <i>ra</i>	oot.						
	8		4.					
1	Example C	construc	tion of	Decision Tre	e with dataset[4 marks]			

	(c) Step 2 (d) Step 3 Figure 5.2. An example of the sequential covering algorithm. iven the data set compute the confidence and accuracy for the rule efund = yes> No	[2]	CO4	L3
	(c) Step 2 (d) Step 3			
	<u>'+' </u>			
	<u>'+' </u>			
	- ₊ - ₋ - ₊ - ₋			
	R1 _ R1 _			
	(a) Original Data (b) Step 1			
	T + T - + +			
	- ₊ + ₋ + ₊ -			
	+ + - R1 -			
	- + +			
	xplanation of Diagram 2[3 marks]			
A	lgorithm +explanation[3+2 marks]			
i	11: Insert the default rule, $\{\} \longrightarrow y_k$, to the bottom of the rule list R .			
	10: end for			
	8: Add r to the bottom of the rule list: $R \longrightarrow R \vee r$. 9: end while			
	 6: r ← Learn-One-Rule (E, A, y). 7: Remove training records from E that are covered by r. 			
	5: while stopping condition is not met do			
	 3: Let R = { } be the initial rule list. 4: for each class y ∈ Y₀ - {yₖ} do 			
	2: Let Y_o be an ordered set of classes $\{y_1, y_2, \dots, y_k\}$.			
į	1: Let E be the training records and A be the set of attribute-value pairs, $\{(A_i, v_i)\}$.			
1	Algorithm 5.1 Sequential covering algorithm.	[0]	207	
) ID:	xplain Rule based classifier sequential algorithm with illustration	[8]	CO4	L
	which the attributes are somewhat correlated.			
•	random variables Naive Bayes classifiers may seem too rigid, especially for classification problems in			
•	provides a graphical representation of the probabilistic relationships among a set of			
•	Differences: [1mark]			
2.	A probability table associating each node to its immediate parent nodes			
	variables.			
1.	There are two key elements of a Bayesian network: [1mark] A directed acyclic graph (dag) encoding the dependence relationships among a set of			
1.	representation of the probabilistic relationships among a set of random variables.			
1.				
1.	A Bayesian belief network (BBN), or simply, Bayesian network, provides a graphical			

	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes
(Conf	idence=	= 3/10=3	30 <mark>% [1</mark>	Mar
4	Accu	ıracy=3	5/3=1009	% [1 M	ark]
	-		ious met		
			Iethod	-	_
			mpling[]		
			ation[1.		_
]	Boot	strap m	ethod[1	.5 mar	·ks]

-To do this class labels of the test records must be known. · Methods for evaluating the performance of a clamifies Hold out Method -> Original data with labeled examples is partitioned into 2 disjoint sets called the training and the lest sets -> classification Model is then induced from the training set and its performance is evaluated on the last set. -> Proportion: 50-50 or 3/3-1/3. -> Accuracy can be estimated based on the test set, dimitations: € > Fewer labeled, examples one available. Other records are held for testing. - Induced Model may not be as good as when all the records one wood for training. () Model highly dependent on the composition of the braining and test sets. -Smaller the training set tipe, the larger the variance of the model. -) If training set is too large, accuracy from smaller lest test set is less vehicle. 1 Training and test sets are dependent They are subset of original data. a class may be ever represented in one subst and will be under sepresented in the other, and there

Random Subsampling: sibHold out mid repealed several trans to improve the estimation of a classifier's performance, then this approach is random subsampling acci - model occuracy during it iteration orecall accuracy accent = = acce/k -s This is also not using as much data for training. So holdout mtd poms are still encountered. -> No control over the no of times record is used for testing and traing. Some records oright be used more often than others. Cross validation: - Alternate to random subsampling - Sach record is used the same no of times for training and exactly once for leating. - NATO Pastition the data who a equal sized subset · @ chaose one of the Subsets for training and Other for lesting. @ Swap the roles of the Subsets So that the previous training Sel becomes the test let and Viceversa. This is 2 cross validation. Total orr is used obtained by summing up the exons for both runs. (4) K-fold Cross validation and generalizes the approach by segmenting the data into k-egnal sized particlishs. diving each run one of the partitions chosen to testing while the rest of them are used for testing exactly training.

-> This procedure is repealed & times so that each partition is and for lesting exactly once. -> Total orror = sum up the essess for all kru -> K = N. i.e, each test set contains one Leave one out: -3 Adv: All the data und for training. Mulnally exclusive lest test dis Adv: Compliationally expensive.
Variance of estimated performance is high. Bootstap ontd: -The previous mids use sampling without replacement. So No, duplicate records in the training and test sets. -> Boot strap uses sampling with replacement -> record already chosen for training is put back into the visignal pool of records so that it is equally likely to be redrawn. -> Original data -> N records. We can show that on average a bootstrap sample of size N contains about 63.2%. of the records an original data - This approximation follows from the fact that the probability a record Chosen by Bookstrap Sample is When N & sufficeretty large then to

	Dabore probability approaches			
	-> Records that are not included in the boot-strap sample become part of the			
	Set. Sampling procedure is repealed b'time l'6 generate b bootstrap samples.			
<u>)</u>	Given the training set, Classify the test record given below using Naive Bayes	[4]	CO4	_

6b) Given the training set, Classify the test record given below using Naive Bayes classifier

classifier.					
Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	no	Yes	?

A: attributes M: mammals N: non-mammals

[1 mark for each step]

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{5}{7} \times \frac{5}{7} = 0.3748$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{6}{13} \times \frac{9}{13} = 0.0189$$

$$P(A \mid M)P(M) = 0.3748 \times \frac{7}{20} = 0.13118$$

$$P(A \mid N)P(N) = 0.0189 \times \frac{13}{20} = 0.012285$$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals