

Scheme Of Evaluation

<u>Internal Assessment Test III – July 2021</u>

Sub:	DIGITAL COMMUNICATION						Code:	18EC61	
Date:	29/07/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Note: Answer Any 5 Questions

Question		Description	Marks		Max
#				Distribution	
1		Explain Gram-Schmidt orthogonalization procedure to obtain a set of orthonormal		10	10
		basis functions for the given set of signals.			
		Definition	2		
		Linear Independence	2		
		Basis Functions	6		
2	a	Consider a signal space with the following basis functions.		06	10
		$\Phi_1(t) = \begin{cases} 1 \text{ for } 0 \le t \le 1 \\ 0 \text{ otherwise} \end{cases}$			
		$\Phi_2(t) = \begin{cases} 1 \text{ for } 0 \le t < 0.5\\ -1 \text{ for } 0.5 \le t \le 1\\ 0 \text{ otherwise} \end{cases}$			
		Plot the signals with coordinates $(2, -1)$ and $(-2, 1)$.			
		• Plotting $x_1(t)$	3	-	
		• Plotting $x_2(t)$	3		
2	b	Derive an expression for the energy of a signal in terms of its coordinates.		4	
		Derivation	4		
3		Obtain a set of orthonormal basis functions for the following set of signals.		10	10
		$x_1(t) = \begin{cases} 4 \text{ from } 0 \le t \le 4 \\ 0 \text{ otherwise} \end{cases}$			
		$x_2(t) = \begin{cases} 4 \text{ from } 0 \le t \le 2 \\ 0 \text{ otherwise} \end{cases}$			

	$x_3(t) = \begin{cases} 4 \text{ from } 2 \le t \le 4 \\ 0 \text{ otherwise} \end{cases}$			
	Express the signals as a linear combination of basis functions. Draw the			
	signal space diagram (Constellation Diagram).			
	• Basis Function $\phi_1(t)$	2	-	
	• Basis Function $\phi_2(t)$	3		
	Linear Combination	3		
	Constellation Diagram	2		
4	Find the output of the filter matched to the signal $x(t)$ when $x(t)$ is input to the		10	10
	filter where			
	$x(t) = \begin{cases} 1 \text{ for } 0 \le t \le 1 \\ 0 \text{ otherwise} \end{cases}$			
	Impulse Response	2	•	
	• Output for $0 \le t \le 1$	4		
	• Output for $1 \le t \le 2$	4		
5	Explain Binary Phase Shift Keying (BPSK) with neat block diagram of transmitter		10	10
	and receiver. Obtain the signal space diagram. What is the decision rule at the			
	receiver?			
	• Equations	2		
	• Transmitter	2		
	Constellation Diagram	2		
	• Receiver	2		
	Decision Rule	2		
6	Draw the block diagram of Coherent Binary Frequency Shift Keying (BFSK)		10	-
	receiver. State the decision rule at the receiver. Derive an expression for probability			
	of error.			
	Receiver	2	-	
	Decision Rule	2		
	Probability of Error	6		
7	Explain M-ary PSK with necessary equations. Draw the signal space diagram for		10	10
	M=8.			
	• Definition	2	1	
	• Equations	2		
	Basis Functions	3		
	Constellation Diagram	3		
	<u> </u>	<u> </u>	L	

SOLUTIONS

1.

Gram-Schmidt orthogonalization procedure permits the representation of any set of M energy signals, $\{x_i(t)\}$, i=1,2,...M as a linear combination of N orthonormal basis functions, where $N \subseteq M$.

That is to say,

 $\chi_{i}(t) = \chi_{i} \varphi_{i}(t) + \chi_{i} \varphi_{2}(t) + \dots + \chi_{i} \varphi_{N}(t)$ $= \sum_{j=1}^{N} \chi_{ij} \varphi_{j}(t) , \quad 0 \leq t \leq T$ $= i = 1, 2, \dots M.$

where the coefficients x_{ij} are defined by

$$x_{ij} = \int_{0}^{T} x_{i}(t) \, dt$$

$$i = 1, 2, \dots M$$

$$j = 1, 2, \dots N$$

$$N \leq M$$

The real valued basis functions, $\phi_1(t)$, $\phi_2(t)$, $\phi_N(t)$ are orthonormal, ie,

ie,
$$\int_{0}^{\infty} \Phi_{i}(t) \Phi_{j}(t) dt = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$E = \int_{0}^{\infty} x^{2}(t) dt$$

$$= \int_{0}^{\infty} x_{i} \phi_{i}(t) \int_{j=1}^{\infty} x_{j} \phi_{j}(t) dt$$

$$= \int_{0}^{\infty} x_{i} \phi_{i}(t) \int_{j=1}^{\infty} x_{j} \phi_{j}(t) dt$$

$$= \int_{0}^{\infty} x_{i} \int_{j=1}^{\infty} \phi_{i}(t) \phi_{j}(t) dt$$

$$= \int_{0}^{\infty} \phi_{i}(t) \phi_{j}(t) dt = \int_{0}^{\infty} \int_{0}^{\infty} for i \neq j$$

$$= \int_{0}^{\infty} \phi_{i}(t) \phi_{j}(t) dt = \int_{0}^{\infty} \int_{0}^{\infty} for i \neq j$$

$$= \int_{0}^{\infty} (t) \phi_{j}(t) dt = \int_{0}^{\infty} \int_{0}^{\infty} for i \neq j$$

$$= \int_{0}^{\infty} x_{i} \phi_{j}(t) dt = \int_{0}^{\infty} \int_{0}^{\infty} for i \neq j$$

$$= \int_{0}^{\infty} (t) \phi_{j}(t) dt = \int_{0}^{\infty} \int_{0}^{\infty} for i \neq j$$

:. (1) can be written as,

$$E = \sum_{i=1}^{N} \chi_{i} \chi_{i}$$

$$= \sum_{i=1}^{N} \chi_{i} \dots (3)$$

$$= \sum_{i=1}^{N} \chi_{i} \dots (3)$$

This is the expression for energy of x(t) in terms of its coordinates x_i , i = 1, 2, ... N.

stepi) Energy of
$$x_2(t)$$
,
$$E_2 = \int_{0}^{2} 3^2 dt$$

$$= 9 + |_{0}^{2}$$

$$= 9 \left[2 - 0\right].$$

$$= 18$$

Step ii) Basis function,
$$\phi_1(t) = \frac{9_2(t)}{\sqrt{18}}$$

$$= \frac{9_2(t)}{3\sqrt{2}}$$

stepiii) Energy of 923(t),

$$E_3 = \int_{3}^{4} \frac{2}{3} dt$$

$$= 9 + |_{2}^{4}$$

$$= 9 \left[4 - 2 \right]$$

$$= 18$$

step iv) Basis function,
$$\phi_2(t) = \frac{\chi_3(t)}{\sqrt{E_3}}$$

$$= \frac{\chi_3(t)}{\sqrt{18}}$$

$$= \frac{\chi_3(t)}{\sqrt{18}}$$

$$= \frac{\chi_3(t)}{3\sqrt{2}}$$

Expressing the signals as a linear combination of basis functions.

$$x_1(t) = 3\sqrt{2} \phi_1(t) + 3\sqrt{2} \phi_2(t)$$

 $x_2(t) = 3\sqrt{2} \phi_1(t) + 0 \phi_2(t)$

Impulse response of the filter matched to re(t) is given by,

$$h(t) = \chi(T-t)$$

To find the output of matched filter, (50) we have to find the convolution of input x(t) and impulse response h(t).

$$y(t) = \chi(t) + h(t)$$

$$= \int_{0}^{\infty} \chi(\tau) h(t-\tau) d\tau.$$

To find the output of matched filter, (50) we have to find the convolution of input x(t) and impulse response h(t).

$$y(t) = \chi(t) + h(t)$$

$$= \int_{0}^{\infty} \chi(\tau) h(t-\tau) d\tau.$$

Hence,
$$y(t) = 0 \quad \text{for} \quad t > 2T.$$

$$y(t) = \begin{cases} 0 & \text{for} \quad t < 0 \\ A^2t & \text{for} \quad 0 < t < T \\ 2A^2T - A^2t & \text{for} \quad T < t < 2T \end{cases}$$

$$0 & \text{for} \quad t > 2T$$

5.

$$S_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$$
, $0 \le t \le T_b$ (1)
$$f_c = \frac{\Omega}{T_b}$$

$$\Omega = \frac{1}{T_b}$$

Bit 0:

$$S_{2}(t) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c}t + \pi), \quad 0 \le t \le T_{b}$$

$$= -\sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c}t), \quad 0 \le t \le T_{b}$$

To find basis function.

Energy of $S_1(t) = \int_{-T_b}^{T_b} |S_1(t)|^2 dt$ $= \int_{-T_b}^{2E_b} \cos^2(2\pi f_c t) dt$ $= \int_{-T_b}^{2E_b} \int_{-T_b}^{2E_b} \cos^2(4\pi f_c t) dt$ $= \frac{2E_b}{T_c} \int_{-T_c}^{1+\cos(4\pi f_c t)} dt$

$$=\frac{E_b}{T_b}\int_{0}^{\infty} 1 dt$$

$$= E_b$$
 (2)

Basis function,
$$\phi_1(t) = \frac{S_1(t)}{\sqrt{E_b}}$$

$$= \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$

$$0 \le t \le T_b$$

$$S_{2}(t) = \sqrt{E_{b}} \varphi_{1}(t), \quad 0 \leq t \leq T_{b}$$

$$S_{2}(t) = -\sqrt{E_{b}} \varphi_{1}(t), \quad 0 \leq t \leq T_{b}$$

$$\begin{array}{ccc} S_2 & & S_1 \\ \hline & & & \\ & -\sqrt{E_b} & & & \\ \end{array} \rightarrow \begin{array}{c} S_1 \\ \hline \end{array} \rightarrow \begin{array}{c} \phi_1 \\ \hline \end{array}$$

Block diagram of transmitter.

Binary

data in $NR^2 \longrightarrow PSK$ polar

form $(\sqrt{E_b}, -\sqrt{E_b})$ $\varphi(t)$

Block diagram of receiver

6

PDF of L when 0 was transmitted,
$$f_{L}(1/0) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{(1-\mu)^{2}}{2\sigma^{2}}}$$

$$= \frac{1}{\sqrt{2\pi}N_{0}} e^{\frac{(1-\mu)^{2}}{2N_{0}}}$$

Wrong decision is made when $S_2(t)$ was transmitted and L>0.

.. Probability of error when bit o

$$P_{e}(0) = P\left(L > 0 / 0\right)$$

$$= \int_{2}^{\infty} \int_{1}^{2} \left(\frac{1}{0}\right) dl$$

$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi N_{0}}} e^{\frac{1}{2\pi N_{0}}} dl$$

$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi N_{0}}} e^{\frac{1}{2\pi N_{0}}} dl$$
(11)

$$= \frac{1}{\sqrt{2\pi}} \int_{e}^{\infty} e^{-\frac{z^2}{2}} dz$$

$$= \sqrt{\frac{E_b}{N_o}}$$

$$= \sqrt{\frac{E_b}{N_o}} - \frac{1}{\sqrt{2\pi}} \int_{e}^{\infty} dz$$

Similarly, we may prove that probability of error when bit I was transmitted,

$$P_{e}(1) = Q\left(\sqrt{\frac{E_{b}}{N_{o}}}\right) - - - (17)$$

:. Average probability of error, $= \frac{1}{2}P_{e}(0) + \frac{1}{2}P_{e}(1)$

(Assuming equiprobable Os & Is)

$$= \frac{1}{2} Q \left(\sqrt{\frac{E_b}{N_o}} \right) + \frac{1}{2} Q \left(\sqrt{\frac{E_b}{N_o}} \right)$$

$$= Q\left(\sqrt{\frac{E_b}{N_0}}\right) - \dots (18)$$

In M-ary PSK, phase of the carrier takes one of the M-possible values. ie, $\theta_i = \frac{2\pi}{M}(i-1)$, i=1,2,...M.

Accordingly. M-ary PSK modulated sign.
- al can be written as follows.

$$S_{i}(t) = \sqrt{\frac{2E}{T}} \cos \left[2\pi f_{c}t + \frac{2\pi}{M}(i-1) \right], oct \leq T$$

ĉ=1,2, . M-1, M.

E is the symbol energy

T is the symbol duration.

 $f_c = \frac{n}{T}$ where n is a non-zero integer.

$$S_{\ell}(t) = \sqrt{\frac{2E}{T}} \cos\left[\frac{2\pi}{M}(\ell-1)\right] \cos\left(2\pi f_{c}t\right)$$

$$-\sqrt{\frac{2E}{T}}\sin\left(\frac{2\pi}{M}(i-1)\right)\sin\left(2\pi f_{c}t\right)$$

OE + ET

Basis functions are.

$$\begin{array}{l} \P(\mathsf{t}) = \sqrt{2} \quad \cos\left(2\pi f_{\mathsf{t}}\mathsf{t}\right) \;, \; \; o \leq \mathsf{t} \leq \mathsf{T} \\ \\ \Psi_2(\mathsf{t}) = \sqrt{2} \quad \sin\left(2\pi f_{\mathsf{t}}\mathsf{t}\right) \;, \; \; o \leq \mathsf{t} \leq \mathsf{T} \\ \\ \text{The coordinates of } \quad s_i(\mathsf{t}) \; \text{are} \\ \\ \left[\sqrt{E} \quad \cos\left[\frac{2\pi}{M}\left(i-i\right)\right] \right] \;, \; i = 1, 2, \cdots \; \mathsf{M}. \\ \\ -\sqrt{E} \quad \sin\left[\frac{2\pi}{M}\left(i-i\right)\right] \end{array}$$
 Signal space diagram for $\mathsf{M} = 8$

-