

## CMR Institute of Technology, Bengaluru DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Solutons of Internal Assesment Test – III Subject: OPERATIONAL AMPLIFIERS AND LINEAR ICS (18EE46) Semester: 4A

# 1. Design a non-inverting Schmitt trigger to have UTP= +3 V and LTP=-5 V. Use op-amp 741 with supply voltage of 15V.

### **Explain the working of non-inverting Zero Crossing Detector (ZCD)**

#### **Solution:**

**Solution**: The circuit is shown in the Fig. 5.6.7.

UTP = 
$$3 \text{ V. LTP} = -5 \text{ V}$$

The current  $I_2$  through  $R_1$  must be much higher than  $I_{B(max)}$ .

$$\therefore I_2 = 500 \,\mu\text{A}$$

$$R_2 = \frac{|V_{\text{UT}}|}{I_2}$$

$$= \frac{3}{500 \times 10^{-6}}$$

=  $6 \text{ k}\Omega \text{ (Use 5.6 k}\Omega)$ 



Fig. 5.6.7

For  $V_{CC} = \pm 15 \text{ V}$ , output swings between  $\pm 13.5 \text{ V}$ 

$$\therefore \qquad \text{UTP} = \frac{|V_0| - V_F}{R_1} \times R_2 \quad \text{i.e.} \quad 3 = \frac{13.5 - 0.7}{R_1} \times 5.6 \times 10^3$$

$$R_1 = 23.89 \text{ k}\Omega$$
 (Use 22 kΩ and 1.8 kΩ in series)

For LTP design,  $R_2 = 5.6 \text{ k}\Omega$  remains same.

$$I_3$$
 = Current through  $R_3 = \frac{|V_{LT}|}{R_2} = \frac{5}{5.6 \times 10^3} = 0.8928 \text{ mA}$ 

$$\therefore R_3 = \frac{|V_0| - V_F}{I_3} = \frac{13.5 - 0.7}{0.8928 \times 10^{-3}} = 14.33 \text{ kΩ (Use 15 kΩ) PIV of diodes} > 15 \text{ V}$$

## **Mon-inverting Zero Crossing Detector (ZCD):**

In a Non-inverting zero crossing detector, the op-amp is used in open loop mode

Inverting terminal of the op-amp is grounded and input is applied to the non-inverting terminal. The circuit is shown in the Fig. 5.3.1.

During the positive half cycle, the input voltage is positive i.e. above the reference voltage. Hence the output voltage is +V<sub>sat</sub>. During negative half cycle, the input voltage V<sub>in</sub> is negative, i.e. below the reference voltage. The output voltage is then -V<sub>sat</sub>. Thus the



Fig. 5.3.1 Non-inverting zero crossing detector



Fig. 5.3.2 Waveforms of non-inverting zero crossing detector

output voltage switches between  $+V_{sat}$  and  $-V_{sat}$  whenever the input signal crosses the zero level. This is illustrated in Fig. 5.3.2.

Key Point From the waveforms of non-inverting zero crossing detector it can be seen that the circuit can be used as a square wave generator.

2. With a neat circuit diagram and waveforms, explain the operation of inverting Schmitt trigger with different UTP and LTP. Draw its transfer characteristics and hysteresis curve.

### **Solution:**



Fig. 5.6.1 Modified inverting Schmitt trigger

When the output is negative saturation voltage ( $-V_{sat}$ ), the diode  $D_1$  is reverse biased and current  $I_2$  is almost zero. Thus the drop across  $R_2$  which decides  $V_{ref}$  is zero. This gives,

$$V_{LT} = LTP = 0 V$$

When the output is positive saturation voltage (+  $V_{sat}$ ), the diode  $D_1$  is forward biased.

Then the drop across  $R_2$  due to  $I_2$  decides the  $V_{\rm ref}$  i.e. UTP level of the circuit.

Let  $V_F$  = The drop across forward biased diode  $\approx 0.7 \text{ V}$ .

$$I_2 = \frac{V_0 - V_F}{R_1 + R_2}$$

$$\therefore \qquad \text{UTP} = V_{\text{UT}} = \frac{|V_{\text{o}}| - V_{\text{F}}}{R_1 + R_2} \times R_2 \qquad \text{Where } V_{\text{o}} = +V_{\text{sat}}$$

The diode  $D_1$  must have peak inverse voltage rating more than the supply voltage. PIV of  $D_1$  > Supply voltage

The maximum reverse recovery time  $(t_{rr})$  of the diode must be very much smaller than the minimum pulse width of the input signal.

$$t_{rr} \le \frac{\text{Minimum pulse width}}{10}$$

Key Point By reversing the direction of the diode  $D_1$ , any negative level of LTP with zero UTP level can be achieved.

By using two diodes, in series with two different resistances, two different UTP and LTP levels can be achieved. This is shown in the Fig. 5.6.2.



Fig. 5.6.2 Achieving different UTP and LTP levels in an inverting Schmitt trigger

When the output is positive ,  $D_1$  is forward biased and drop across  $R_2$  decides UTP levels.

$$UTP = \frac{|V_o| - V_F}{R_1 + R_2} \times R_2$$

When the output is negative ,  $D_2$  is forward biased and drop across  $R_2$  decides LTP levels,

$$LTP = \frac{|V_o| - V_F}{R_2 + R_3} \times R_2$$

By varying the values of  $R_1$  and  $R_3$ , any desired UTP and LTP levels can be achieved.

### 3. Write short notes on the following:

Voltage to frequency converter.

Voltage to current (V/I) converter with grounded load.

#### **Solution:**

Voltage to frequency converter.

- A voltage-to-frequency converter produces a periodic signal with <u>frequency proportional to</u> an analogue control voltage.
- The waveform produced may be a <u>square wave</u>, a pulse train, a triangular wave or a sine wave.

V-F Converter accepts an analog input Vin and generates a pulse train with frequency f

#### Mathematically expressed as:

f=kVin

Where k= sensitivity of V-F Converter is Hz/V



Op-amp A1 → Comparator

A2 → Integrator

STEP 1: When V<sub>o1</sub> is negative, diode D1 is forward biased and C starts charging

STEP 2: Charging current for C is  $-V_{ol}/R_d$ and as  $R_d \ll R$ , C charges very rapidly

STEP3:When V<sub>el</sub> is positive, diode D1 is reverse biased.

STEP 4: Vin provides current for the integrator and V<sub>o2</sub> ramps down at a rate decided by Vin.



Time period  $t_1$  is <u>less than</u>  $t_2$ 

Output frequency is decided by t<sub>2</sub> i.e Vin

Hence it acts like a frequency to Voltage converter.

The frequency of oscillation is given by:

$$f = \frac{R_1}{2 R_2 RC V_{sat}} V_{in} = k V_{in}$$



### Voltage to current (V/I) converter with grounded load

When one of end of the load is grounded, it is no longer possible to place the load within feedback loop of the op-amp.

Fig. 5.7.2 shows a voltage to current converter in which one end of load resistor R<sub>L</sub> is grounded. It is also known as 'Howland Current Converter' from the name of its inventor.

The analysis of the circuit is accomplished by first determining the voltage  $V_1$  at the noninverting input terminal and then establishing the relationship between  $V_1$  and the load current.



Fig. 5.7.2 Voltage to current converter with grounded load

... (5.7.3)

Applying KCL at node V1 we get,

$$I_1 + I_2 = I_L$$
 i.e.  $\frac{V_i - V_l}{R} + \frac{V_o - V_l}{R} = I_L$ 

$$V_i + V_o - 2 V_I = I_L R$$
 i.e.  $V_1 = \frac{V_i + V_o - I_L R}{2}$ 

The gain of op-amp in noninverting mode is given as  $A = 1 + R_f/R_1$ . For this circuit it is 1 + R/R = 2. Hence, output voltage can be written as

$$V_o = 2V_1 = V_i + V_o - I_L R$$
 ... (5.7.4)  
 $0 = V_i - I_L R$  i.e.  $V_i = I_L R$   
 $I_L = \frac{V_i}{R}$  ... (5.7.5)

From the above equation we can say that the load current depends on the input voltage V<sub>i</sub> and resistor R.

If R is constant, then  $I_L \propto V_i$ . If R is a precision resistor, then the output current will be precisely fixed.

4. With circuit and relevant waveform, explain the working of RC phase shift oscillator. Design a RC phase shift Oscillator using Op-amp. Assume C=0.1  $\mu$ F, frequency of oscillation=200 Hz. Use the supply voltage as 15V.

#### **Solution:**



Fig. 4.6.3 R-C Phase shift oscillator using op-amp

R-C phase shift oscillator using op-amp uses op-amp in inverting amplifier mode. Thus it introduces the phase shift of 180° between input and output. The feedback

network consists of 3 RC sections each producing 60° phase shift. Such a RC phase shift oscillator using op-amp is shown in the Fig. 4.6.3.

The output of amplifier is given to feedback network. The output of feedback network drives the amplifier. The total phase shift around a loop is 180° of amplifier and 180° due to 3 RC section, thus 360°. This satisfies the required condition for positive feedback and circuit works as an oscillator.

The frequency of sustained oscillations generated depends on the values of R and C and is given by,

$$f = \frac{1}{2\pi\sqrt{6} \; R \; C} \qquad \qquad ... \; \text{The frequency is measured in Hz.}$$

At this frequency the gain of the op-amp must be atleast 29 to satisfy  $A\beta = 1$ . Now gain of the op-amp inverting amplifier is given by,

$$|A| \ge \frac{R_f}{R_1} \ge 29$$
 for oscillations i.e.  $R_f \ge 29$   $R_1$ 

Thus circuit will work as an oscillator which will produce a sinusoidal waveform if gain is 29 and total phase shift around a loop is 360°. This satisfies the Barkhausen criterion for the oscillator. These oscillators are used over the audio frequency range i.e. about 20 Hz upto 100 kHz.

Let  $C = 0.1 \,\mu\text{F}$ . Then, from Equation (7–22a),

$$R = \frac{0.065}{(200)(10^{-7})} = 3.25 \,\mathrm{k}\Omega$$

(Use  $R = 3.3 \text{ k}\Omega$ .).

To prevent the loading of the amplifier because of RC networks, it is necessary that  $R_1 \ge 10 R$ . Therefore, let  $R_1 = 10R = 33 \text{ k}\Omega$ . Then, from Equation (7-22b)

$$R_F = 29(33 \text{ k}\Omega) = 957 \text{ k}\Omega$$

(Use  $R_F = 1$ -M $\Omega$  potentiometer.)

When choosing an op-amp, type 741 can be used at lower frequencies (<1 kHz); however, at higher frequencies, an op-amp such as the LM318 or LF351 is recommended because of its increased slew rate.



## 5. Draw and explain triangular wave generator using square wave generator and integrator method. Draw the required waveform.

Answer: It consists of a Schmitt trigger (A) and an integrator (B). The output of Schmitt trigger is a square wave of amplitude  $\pm$  V<sub>sat</sub> and is applied to the inverting (-) input terminal of the integrator. The output of integrator is a triangular wave and it is feedback as input to the Schmitt trigger, through a voltage divider R<sub>2</sub> and R<sub>3</sub>. The circuit acts as free running waveform generator producing triangular and rectangular output waveforms simultaneously.



**Case 1:** To understand circuit operation, assume that the output of Schmitt trigger A (i.e  $V_{01}$ ) is at  $+V_{sat}$ . This forces a constant current  $(+V_{sat}/R_1)$  through C to give a negative going ramp at the output of the integrator.

**Case 2:** Assume that the output of Schmitt trigger A (i.e  $V_{01}$ ) is at  $-V_{sat}$ . This forces a reverse constant current (right to left) through C. Therefore, C discharges and recharges in the opposite direction. This produces a positive going ramp at the output of the integrator, as shown in the following Fig. The sequence then repeats to give triangular wave at the output of integrator B. The output waveform is shown below:



Fig: Output waveform

#### Peak-to-peak amplitude of triangular wave:

$$(P-P) = \frac{R_2 V_{\text{sat}}}{R_2} - \frac{R_3 V_{\text{sat}}}{R_2}$$

$$(II - I)$$

$$V_{\text{tw}}(P-P) = \frac{2R_3 V_{\text{sat}}}{R_2} \dots (A)$$

#### **Frequency Calculation:**

$$T = \frac{4R_1R_3C}{R_2}$$

$$f = \frac{R_2}{4R_1R_3C}$$
frequency of triangle wave.

## 6. Explain the working of precision full wave rectifier with necessary circuit diagram and write the difference between ordinary rectifier and precision rectifier.

#### **Solution:**



the above circuit is a combination of half-wave rectifier with gain = 2 and an investing adder with gain = 39

ouring tre half-cycle

voltage at terminal A = +Vi

while that at terminal B is -2Vi.

I procede D, is off and Dz is on ]

A4 College Book

the origin of the summing circuit, with Ry=Rs

$$V_{0} = -\frac{R_{6}}{R_{4}} \left( V_{P} + V_{B} \right)$$

$$= -\frac{R_{6}}{R_{4}} \left( V_{1} - 2V_{1} \right)$$

$$= -\frac{R_{6}}{R_{4}} \left( -V_{1} \right) = \frac{R_{6}}{R_{4}} V_{1}$$

Ouring -ve half-cycle

VB=0 as Dison and Dass off.

consequently the output is.

$$V_0 = -\frac{R_b}{R_4} \left( V_P + V_B \right) = -\frac{R_b}{R_4} \left( -V_i + 0 \right)$$

$$V_0 = +\frac{R_c}{R_4} V_i$$

So, it can be seen that the output voltage is positive for both the cycle of the input voltage . If  $R_6=R_4=R_5$  then the gain of the circuit is 1. when  $R_6$  is greater than  $R_9$  then rectification and amplification both occurs.

## 1 Precision Rectifrers

The figure shows a half ware rectifier using diode (which is not ideal).

The disadvantages of the circuits aree-

(i) comm't rectify voltage below o't volt.

(ii) No amplification.



Precision rectifier provides solution to these droubbacks.

(i) No diode voltage drop b/w input and output.

(1) Ability to rectify very small voltages (typically below 0.7 v)

(iii) Amplification if required.

(iv) Low output impedance.

## 7. Explain the working of R-2R ladder DAC. Assume that binary input is 001.

In this type, reference voltage is applied to one of the switch positions, and other switch position is connected to ground, as shown in the Fig. 7.3.4.



Fig. 7.3.4 R/2R ladder D/A converter

Let us consider 3-bit R/2R ladder DAC with binary input 001, as shown in the Fig. 7.3.5.



Fig. 7.3.5 3-bit R/2R ladder DAC

Reducing above network to the left by Thevenin's theorem we get,



Fig. 7.3.6 (c)

Therefore, the output voltage is  $V_R/8$  which is equivalent to binary input 001. For binary input 100 the network can be reduced as follows:



Fig. 7.3.7 (a)

Therefore, the output voltage is  $V_R/2$ , which is equivalent to binary input 100.

In general, the voltage is given by

$$V_0 = -V_R (b_1 2^{-1} + b_2 2^{-2} + b_3 2^{-3} + .... + b_n 2^{-n})$$

## Advantages of R/2R ladder DACs

 Easier to build accurately as only two precision metal film resistors are required.



Flg. 7.3.7 (b)

- 2. Number of bits can be expanded by adding more sections of same R/2R values.
- 3. In inverted R/2R ladder DAC, node voltages remain constant with changing input binary words. This avoids any slowdown effects by stray capacitances.