

Internal Assesment Test - III

	1		111001110	1 100 001110110 1						1700	<u>-1 /</u>
Sub:	CONTROL SYS	TEMS					e:	17EE61 / 18EE61			
Date:	02/08/2021	Duration:	90 mins	Max Marks:	50	Sem:	6th	Bran	nch:	EEI	Ξ
Answer Any FIVE FULL Questions											
									Mark	Marks OBE CO RB	
	Sketch the root locus of $G(s) = \frac{K}{s(s+2)(s+4)}$		er function	whose open lo	op tran	sfer fund	ction i	S	10	CO4	L4
-	For the closed let $\frac{C(s)}{R(s)} = \frac{16}{s^2 + 4s + 16}$. Maximum overshoot.	Determine	undamp	oed natural fi	-			-		CO3	L3
	A unity feedback system is characterized by open-loop transfer function $G(s) = \frac{10}{s^2(1+0.4s)(1+0.3s)}$. Determine steady state errors for unit step, unit ramp and unit parabola.							10	CO3	L3	
1	Determine the range of K for stability of unity feedback system whose open loop transfer function is $G(s) = \frac{K}{s(s+1)(s+2)}$ using Routh Hurwitz criteria.							10	CO3	L4	
i	Determine if the pole nearest to the imaginary axis is at least -0.75 away from imaginary axis, for the system given by characteristic equation $s^4 + 5s^3 + 10s^2 + 10s + 4 = 0$						10	CO3	L4		
	A unity feedback con	G(1	en loop transfe $\frac{K}{+4s+13}$	er funct	ion			10	CO4	L4
	Determine the freque $G(s) = \frac{225}{s(s+6)}$	ency domain	specifica	tions for the u	nity fee	dback s	ystem	l	10	CO4	L3

Control Systems IAT 3 Solution

1.
Step-1
Starting points are S=0, S=-2, S=-4
Ending points are s= 0,00,00.
Step: 2.
Number of branches = 3.
Step: 3 Symmetrical.
Step:4
Angle of Asymptotes Pa= (27+1)180
n-m
n=3, m=0, n-m-1=3-0-1=2.
n=3, m=0, n-m-1=3-0-1=2. If $q=0$, $q=60$. Intersection of Asymptote
If 9=0, Pa=60. Intersection at Asymptote
If $g=0$, $q_a=60$. The section of Asymptote $g=1$, $q_a=180^\circ$. $\sigma=(0-2-4)-0$
If $q=0$, $q=60$. $q=1$, $q=180$. $q=2$, $q=-60$. $q=2$, $q=-60$. $q=2$.
If $g=0$, $q_a=60$. The section of Asymptote $g=1$, $q_a=180^\circ$. $\sigma=(0-2-4)-0$
If $q=0$, $q=60$. $q=1$, $q=180$. $q=1$, $q=180$. $q=2$, $q=-60$. $q=2$, $q=-60$. $q=2$. Step:-5. Noot locus of real exis.
If $g=0$, $Q_{a}=60$. $g=1$, $Q_{a}=180^{\circ}$. $g=2$, $Q_{a}=-60^{\circ}$. $g=2$, $Q_{a}=-60^{\circ}$. $g=2$. Step:-5. Nort lows of real evis. $g=2$ to $g=2$.
If $g=0$, $Q_{9}=60^{\circ}$. Intersection of Asymptote $g=1$, $Q_{9}=180^{\circ}$. $T_{0}=(0-2-4)-0$ $g=2$, $Q_{9}=-60^{\circ}$. $T_{0}=\frac{3-0}{3-2}$. Step:-5. Now I locus of real evis. -D to -4 \Rightarrow and \Rightarrow Yes. $T_{0}=\frac{3-0}{3-2}$.
If $g=0$, $Q_{a}=60$. The section of Asymptote $g=1$, $Q_{a}=180^{\circ}$. $g=2$, $Q_{a}=-60^{\circ}$. $g=2$, $Q_{a}=-60^{\circ}$. $g=3-0$. Step:-5. Noot locus of real oxis. $g=0$ to $g=0$ and $g=0$. $g=0$ to $g=0$.

Charles Pole of Complex DESD
Step:6. No Complex pole of Complex Dessival. . No Angle of Departure / Assival.
and Angle of Departure/1965
Stept 7
Veri
(6)
R(S) S(S+2)(S+4)+K
S(S+2)(S+4) + K20.
53+652+85+K20.
3 1 8 S=> K>0.
3 3 7 -
3 = 7 / 12
S 48-16 FOR Stable,
50 K OKKL48.
K=48, 652+K=0.
652+4820.
s ² +820.
52-8.
cz + 2.8 i
S-128J
Stepi-8- Broakawy points.
53+652+85+K=0.
$K = -(s^3 + 6s^2 + 8s)$
N = (5 705 785)
215 = 62
-d1 = -(852+125+8)=0.
03
5=-0.845, -3.154
S=-0.845 is valid breakawy Point
SI -3-154 is invalid breakawy Point

2.

$$\frac{C(S)}{R(S)} = \frac{16}{S^2 + 4S + 16}$$

· 52+25wns+w2 (2) 5+45+14

$$\omega_{n}^{2} = 16$$

$$\omega_{n} = 4 \text{ rad/sec} \int_{0.5}^{2} 3\omega_{n} = 4$$

: Undamped natural

Damping 89 tio, S = 0.5

$$=16.37$$

Put 5=(2-0.75) (2-0.75)+5(2-0.75)+10(2-0.75)+10(2-0.75)+4=0 24-27+11·2422-52-7·043=0

Un Stable System.

:3 roots are less negative than -0.75.

Step! Starting and Ending Points. starting Points are poles. Ending Points are Step 2 Number of branch = Number of Poles

SteP3 Symmetrical with respect to & axis. Lep4

Ingle of Asymptote Pa=(22+1)180

n=3, m=0, n-m-1=3-0-1=2. If 9=0, Pa= 180 = 60.

If 7=1, Pa=3×180 - 180°.

If 9-2, 9 = 5x180 = 300 = -60°

$$\frac{C(S)}{R(S)} = \frac{22S}{s^2 + 6S + 225} \longrightarrow 0$$

By Comparing Equation (1) with. Wn2 , we have

$$\omega_0^2 = 225$$

$$\omega_0 = \sqrt{225}$$

$$\xi = \frac{6}{2Wn} = \frac{6}{2X15}$$

Resonant Pears.

$$M_{\pi} = \frac{1}{2\xi\sqrt{1-\xi^{2}}}$$

$$= \frac{1}{2*0.2*\sqrt{1-(0.2)^{3}}}$$

$$M_{\pi} = 2.60$$

$$\omega_{b} = \omega_{n} \sqrt{(1-2\xi^{2})} + \sqrt{2-4\xi^{2}+4\xi^{4}}$$

$$= 15 \sqrt{(1-2(0\cdot2)^{2})} + \sqrt{2-4(0\cdot2)^{2}+4(0\cdot2)^{4}}$$

$$= 15 \sqrt{(1-2(0\cdot2)^{2})} + 1.3588$$

$$\omega_{b} = 22.656 \text{ rad/see}.$$