
CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 2 Answer Key

Sub: Advanced Java Programming Sub Code:
18MC

A41

Date: 19/05/2021 Duration: 90 min’s
Max

Marks:
50 Sem 4 Branch: MCA

1a. Explain the different type of JDBC drivers 7 CO1 L2

JDBC driver specification classifies JDBC drivers into four groups

Type 1: JDBC-to-ODBC Driver

 Microsoft created ODBC (Open Database Connection), which is the basis from which Sun created
JDBC. Both have similar driver specifications and an API.

 The JDBC-to-ODBC driver, also called the JDBC/ODBC Bridge, is used to translate DBMS calls
between the JDBC specification and the ODBC specification.

 MS Access and SQL Server contains ODBC driver written in C language using pointers, but java does
not support the mechanism to handle pointers.

 So JDBC-ODBC Driver is created as a bridge between the two so that JDBC-ODBC bridge driver
translates the JDBC API to the ODBC API.

Type-1 ODBC Driver for MS Access and SQL Server

Drawbacks of Type-I Driver:
o ODBC binary code must be loaded on each client.
o Transaction overhead between JDBC and ODBC.
o It doesn‟t support all features of Java.
o It works only under Microsoft, SUN operating systems.

Type 2: Java/Native Code Driver or Native-API Partly Java Driver

It converts JDBC calls into calls on client API for DBMS.

The driver directly communicates with database servers and therefore some database

client software must be loaded on each client machine and limiting its usefulness for

internet

The Java/Native Code driver uses Java classes to generate platform- specific code that is

code only understood by a specific DBMS.

Ex: Driver for DB2, Informix, Intersoly, Oracle Driver, WebLogic drivers

Drawbacks of Type-I Driver:

o Some database client software must be loaded on each client machine

o Loss of some portability of code.

o Limited functionality

o The API classes for the Java/Native Code driver probably won‟t work with

another manufacturer‟s DBMS.

Type 3: Net-Protocol All-Java Driver

It is completely implemented in java, hence it is called pure java driver. It translates the

JDBC calls into vendor‟s specific protocol which is translated into DBMS protocol by a

middleware server

Also referred to as the Java Protocol, most commonly used JDBC driver.

The Type 3 JDBC driver converts SQL queries into JDBC- formatted statements, in-turn

they are translated into the format required by the DBMS.

Ex: Symantec DB

Drawbacks:

It does not support all network protocols.

Every time the net driver is based on other network protocols.

Type 4: Native-Protocol All-Java Driver or Pure Java Driver

Type 4 JDBC driver is also known as the Type 4 database protocol.

The driver is similar to Type 3 JDBC driver except SQL queries are translated into the

format required by the DBMS.

SQL queries do not need to be converted to JDBC-formatted systems.

This is the fastest way to communicated SQL queries to the DBMS.

Here the driver uses network protocol this protocol is already built-into the database

engine; here the driver talks directly to the database using java sockets. This driver is

better than all other drivers, because this driver supports all network protocols.

Use Java networking libraries to talk directly to database engines

Ex: Oracle, MYSQL

Only disadvantage: need to download a new driver for each database engine

1b. What is Java bean? Write the advantages of Java been

JavaBeans is a

portable,

platform-independent component model

written in the Java programming language.

The JavaBeans architecture was built

through a collaborative industry effort and

enables developers to write reusable components in the Java programming language.

Java Bean components are known as beans.

Beans are dynamic in that they can be changed or customized.

Advantages

Software component architecture provides standard mechanisms to deal with software building blocks.

The following list enumerates some of the specific benefits that Java technology provides for a

component developer:

• A Bean obtains all the benefits of Java's "write-once, run-anywhere" paradigm.

• The properties, events, and methods of a Bean that are exposed to an application

builder tool can be controlled.

• A Bean may be designed to operate correctly in different locales, which makes it

useful in global markets.

• Auxiliary software can be provided to help a person configure a Bean. This software is only

needed when the design-time parameters for that component are being set. It does not need to be

included in the run-time environment.

• The configuration settings of a Bean can be saved in persistent storage and restored at a later time.

• A Bean may register to receive events from other objects and can generate events that are sent to

other objects.

Key Concepts
1. Introspection

2. Customizers

3. Properties

4. Methods

5. Events

6. Persistent

2. Explain the various steps of JDBC with code snippet
10 CO1 L2

The following 5 steps are the basic steps involve in connecting a Java application with Database using

JDBC.

Register the Driver

Create a Connection

Create SQL Statement

Execute SQL Statement

Closing the connection

Register the Driver

Class.forName() is used to load the driver class explicitly.

Example to register with JDBC-ODBC Driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Create a Connection

getConnection() method of DriverManager class is used to create a connection.

Syntax

getConnection(String url)

getConnection(String url, String username, String password)

getConnection(String url, Properties info)

Example establish connection with Oracle Driver

Connection con = DriverManager.getConnection

 ("jdbc:oracle:thin:@localhost:1521:XE","username","password");

Create SQL Statement

createStatement() method is invoked on current Connection object to create a SQL Statement.

Syntax

public Statement createStatement() throws SQLException

Example to create a SQL statement

Statement s=con.createStatement();

Execute SQL Statement

executeQuery() method of Statement interface is used to execute SQL statements.

Syntax

public ResultSet executeQuery(String query) throws SQLException

Example to execute a SQL statement

ResultSet rs=s.executeQuery("select * from user");

 while(rs.next())

 {

 System.out.println(rs.getString(1)+" "+rs.getString(2));

 }

Closing the connection

After executing SQL statement you need to close the connection and release the session.

The close() method of Connection interface is used to close the connection.

Syntax

public void close() throws SQLException

Example of closing a connection

con.close();

import java.sql.*;

class OracleCon{

public static void main(String args[]){

try{

//step1 load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver");

 //step2 create the connection object

Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

//step3 create the statement object

Statement stmt=con.createStatement();

//step4 execute query

ResultSet rs=stmt.executeQuery("select * from emp");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

//step5 close the connection object

con.close();

 }catch(Exception e){ System.out.println(e);}

}

}

3. Describe the basic JDBC datatypes and advanced JDBC datatypes
10 CO1

1. BLOB

• The JDBC type BLOB represents an SQL3 BLOB (Binary Large Object).

• A JDBC BLOB value is mapped to an instance of the Blob interface in the Java programming

language.

• A Blob object logically points to the BLOB value on the server rather than containing its binary data,

greatly improving efficiency.

• The Blob interface provides methods for materializing the BLOB data on the client when that is

desired.

2. CLOB

• The JDBC type CLOB represents the SQL3 type CLOB (Character Large Object).

• A JDBC CLOB value is mapped to an instance of the Clob interface in the Java programming

language.

• A Clob object logically points to the CLOB value on the server rather than containing its character

data, greatly improving efficiency.

• Two of the methods on the Clob interface materialize the data of a CLOB object on the client.

3. ARRAY

• The JDBC type ARRAY represents the SQL3 type ARRAY.

• An ARRAY value is mapped to an instance of the Array interface in the Java programming language.

• An Array object logically points to an ARRAY value on the server rather than containing the elements

of the ARRAY object, which can greatly increase efficiency.

• The Array interface contains methods for materializing the elements of the ARRAY object on the client

in the form of either an array or a ResultSet object.

Example : ResultSet rs = stmt.executeQuery(“SELECT NAMES FROM STUDENT”);

 rs.next();

 Array stud_name=rs.getArray(“NAMES”);

4. DISTINCT

• The JDBC type DISTINCT represents the SQL3 type DISTINCT.

• For example, a DISTINCT type based on a CHAR would be mapped to a String object, and

a DISTINCT type based on an SQL INTEGER would be mapped to an int.

• The DISTINCT type may optionally have a custom mapping to a class in the Java programming

language.

• A custom mapping consists of a class that implements the interface SQLData and an entry in

a java.util.Map object.

5. STRUCT

• The JDBC type STRUCT represents the SQL3 structured type.

• An SQL structured type, which is defined by a user with a CREATE TYPE statement, consists of one or

more attributes. These attributes may be any SQL data type, built-in or user-defined.

• A Struct object contains a value for each attribute of theSTRUCT value it represents.

• A custom mapping consists of a class that implements the interface SQLData and an entry in

a java.util.Map object.

6. REF

• The JDBC type REF represents an SQL3 type REF<structured type>.

• An SQL REF references (logically points to) an instance of an SQL structured type, which the

REF persistently and uniquely identifies.

• In the Java programming language, the interface Ref represents an SQL REF.

7. JAVA_OBJECT

• The JDBC type JAVA_OBJECT, makes it easier to use objects in the Java programming language as

values in a database.

• JAVA_OBJECT is simply a type code for an instance of a class defined in the Java programming

language that is stored as a database object.

• The JAVA_OBJECT value may be stored as a serialized Java object, or it may be stored in some vendor-

specific format.

• The type JAVA_OBJECT is one of the possible values for the column DATA_TYPE in the

ResultSet objects returned by various DatabaseMetaData methods, including getTypeInfo,

getColumns, and getUDTs.

• Values of type JAVA_OBJECT are stored in a database table using the

method PreparedStatement.setObject.

• They are retrieved with They are retrived with the methods ResultSet.getObject

or CallableStatement.getObject and updated with the ResultSet.updateObject method.

For example, assuming that instances of the class Engineer are stored in the column ENGINEERS in the

table PERSONNEL, the following code fragment, in which stmt is a Statement object, prints out the names

of all of the engineers.

4. Develop a program to insert following data into music database. Using prepared Statement object.

Table consists of music_id int(5),music_name varchar(20),music_author varchar(20) (08 Marks).
10 CO1 L5

package j2ee.p9;

import java.sql.*;

import java.io.*;

public class Studentdata {

 public static void main(String[] args) {

 Connection con;

 PreparedStatement pstmt;

 Statement stmt;

 ResultSet rs;

 String music_name,music_author;

 Integer music_id,

 try

 {

 Class.forName("com.mysql.jdbc.Driver"); // type1 driver

 try{

 con=DriverManager.getConnection("jdbc:mysql://127.0.0.1/mca","root","system"); // type1

access connection

 BufferedReader br=new BufferedReader(new

InputStreamReader(System.in));

 do

 {

 System.out.println("\n1. Insert.\n2. Select.5. Exit.\nEnter your choice:");

 int choice=Integer.parseInt(br.readLine());

 switch(choice)

 {

 case 1: System.out.print("Enter music id :");

 music_id =Integer.parseInt(br.readLine());

 System.out.print("Enter music name :");

 music_name=br.readLine();

 System.out.print("Enter music author :");

 music_author=br.readLine();

 pstmt=con.prepareStatement("insert into music

values(?,?,?)");

 pstmt.setInt(1,music_id);

 pstmt.setString(2,music_name);

 pstmt.setString(3,music_author);

 pstmt.execute();

 System.out.println("\nRecord Inserted successfully.");

 break;

 case 2:

 stmt=con.createStatement();

 rs=stmt.executeQuery("select *from music ");

 if(rs.next())

 {

 System.out.println("Music ID \t Music Name \t Music

author\n--------------------------------");

 do

 {

 music_id=rs.getInt(1);

music_name=rs.getString(2);

 music_author=rs.getString(3);

System.out.println(music_id+"\t"+music_name+”\t”+music_author);

 }while(rs.next());

 }

 else

 System.out.println("Record(s) are not available in

database.");

 break;

 case 3: con.close(); System.exit(0);

 default: System.out.println("Invalid choice, Try again.");

 }//close of switch

 }while(true);

 }//close of nested try

 catch(SQLException e2)

 {

 System.out.println(e2);

 }

 catch(IOException e3)

 {

 System.out.println(e3);

 }

 }//close of outer try

 catch(ClassNotFoundException e1)

 {

 System.out.println(e1);

 }

 }

}

5. Discuss built-in annotations with example program
10 CO 1 L2

Java Annotation is a tag that represents the metadata i.e. attached with class, interface,
methods or fields to indicate some additional information which can be used by java compiler
and JVM.
Annotations in java are used to provide additional information, so it is an alternative option for
XML and java marker interfaces.

Example for annotation

Built-In Java Annotations

• These four are the annotations imported from java.lang.annotation: @Retention, @Documented,

@Target,and @Inherited.

• @Override, @Deprecated, and @SuppressWarnings are included in java.lang.

1. @Retention

@Retention is designed to be used only as an annotation to another annotation. It specifies

the retention policy.

• A retention policy determines at what point annotation should be discarded.
• Java defined 3 types of retention policies through java.lang.annotation.RetentionPolicy

enumeration. It has SOURCE, CLASS and RUNTIME.
• Annotation with retention policy SOURCE will be retained only with source code, and

discarded during compile time.
• Annotation with retention policy CLASS will be retained till compiling the code, and

discarded during runtime.
• Annotation with retention policy RUNTIME will be available to the JVM through runtime.
• The retention policy will be specified by using java built-in annotation @Retention, and

we have to pass the retention policy type.

The default retention policy type is CLASS.
@Retentation (RetentionPolity.RUNTIME)
#interface classsica{ }

2. @Documented

The @Documented annotation is a marker interface that tells a tool that an annotation is to be

documented. It is designed to be used only as an annotation to an annotation declaration. By default,

annotation are not included in javadoc(is a documentation generator). But if @document is used, it

then will be processed by javadoc like toolas and the annotation type information will also be

included in generated document .

3. @Target

The @Target annotation specifies the types of declarations to which an annotation can be applied. It

is designed to be used only as an annotation to another annotation. @Target takes one argument,

which must be a constant from the ElementType enumeration. This argument specifies the types of

declarations to which the annotation can be applied. The constants are shown here along with the type

of declaration to which they correspond.

Target Constant Annotation Can Be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

we can specify one or more of these values in a @Target annotation. To specify multiple

values, we must specify them within a braces-delimited list. For example, to specify that an

annotation applies only to fields and local variables, we can use this @Target annotation:

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

4. @Inherited

@Inherited is a marker annotation that can be used only on another annotation declaration. it affects

only annotations that will be used on class declarations. @Inherited causes the annotation for a

superclass to be inherited by a subclass. Therefore, when a request for a specific annotation is made to

the subclass, if that annotation is not present in the subclass,then its superclass is checked. If that

annotation is present in the superclass, and if it is annotated with @Inherited, then that annotation

will be returned.

java.lang.annotation.Inherited

@Inherited
public @interface MyAnnotation {

}
@MyAnnotation
public class MySuperClass { ... }
public class MySubClass extends MySuperClass { ... }

In this example the class MySubClass inherits the annotation
@MyAnnotation because MySubClassinherits from MySuperClass, and MySuperClass has
a @MyAnnotation annotation.

5. @Override

@Override is a marker annotation that can be used only on methods. A method annotated with

@Override must override a method from a superclass. If it doesn’t, a compile-time error will result.

It is used to ensure that a superclass method is actually overridden, and not simply overloaded.

6. @Deprecated

@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has been replaced

by a newer form. This annotation is used to mark a class, method or field as deprecated, meaning it

should on longer be used If your code uses deprecated classes, methods or fields the compiler will

give you a warning.

@Deprecated

Public class MyComponent

{

}

The use of the @Deprecated annotation above the class declaration marks the class as deprecated.

The use of the @Deprecated annotation above the fieldclass declaration marks the field as deprecated.

7. @SuppressWarnings specifies that one or more warnings that might be issued by the compiler

are to be suppressed. The warnings to suppress are specified by name, in string form. This

annotation can be applied to any type of declaration.

@SuppressWarnings

– Makes the compiler suppress warnings for a given methods

– If a method class a deprecated method, or makes an insecure type case, the compiler may

generate a warning.

– You can suppress these warnings by annotating the method containing the code with the

@SuppressWarnings annotation

@ SuppressWarnings

public void methodWithWarning()

{

}

6. Write a short note about

a)Bean Implementation class

b)Batch updates
10 CO 2 L2

The preparedStatement object allows you to execute parameterized queries.

A SQL query can be precompiled and executed by using the PreparedStatement object.

• Ex: Select * from publishers where pub_id=?

Here a query is created as usual, but a question mark is used as a placeholder for a value• that is

inserted into the query after the query is compiled.

The preparedStatement() method of Connection object is called to return the• PreparedStatement

object.

Ex: PreparedStatement stat; stat= con.prepareStatement(“select * from publisher where pub_id=?”)

Batch Updates

A batch update is a batch of updates grouped together, and sent to the database in
one "batch", rather than sending the updates one by one.

Sending a batch of updates to the database in one go, is faster than sending them
one by one, waiting for each one to finish. There is less network traffic involved in
sending one batch of updates (only 1 round trip), and the database might be able to
execute some of the updates in parallel. The speed up compared to executing the
updates one by one, can be quite big.

You can batch both SQL inserts, updates and deletes. It does not make sense to
batch select statements.

There are two ways to execute batch updates:

1. Using a Statement
2. Using a PreparedStatement

i) Add Batch

ii) Clear Batch

iii) Execute Batch

Statement object is used to execute batch updates. You do so using

the addBatch() and executeBatch() methods. Here is an example:

Statement statement = null;

try{

 statement = connection.createStatement();

 statement.addBatch("update people set firstname='John' where id=123");

 statement.addBatch("update people set firstname='Eric' where id=456");

 statement.addBatch("update people set firstname='May' where id=789");

 int[] recordsAffected = statement.executeBatch();

} finally {

 if(statement != null) statement.close();

}

First you add the SQL statements to be executed in the batch, using

the addBatch() method.

Then you execute the SQL statements using the executeBatch().

The int[] array returned by the executeBatch() method is an array

of int telling how many records were affected by each executed SQL statement in

the batch

7. Write a java JSP program to create Java bean from a HTML form data and display it in a JSP page.
10 CO2 L4

student.java

package program8;

public class stud

{

 public String sname;

 public String rno;

 //Set method for Student name

 public void setsname(String name)

 {

 sname=name;

 }

 //Get method for Student name

 public String getsname()

 {

 return sname;

 }

 //Set method for roll no

 public void setrno(String no)

 {

 rno=no;

 }

 //Get method for roll no

 public String getrno()

 {

 return rno;

 }

}

display.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- Using the studb bean -->

<jsp:useBean id ="studb" scope = "request" class = "program8.stud"></jsp:useBean>

Student Name : <jsp:getProperty name="studb" property="sname"/>

Roll No. : <jsp:getProperty name="studb" property="rno"/>

</body>

</html>

first.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- Create the bean studb and set the property -->

<jsp:useBean id="studb" scope="request" class="program8.stud"></jsp:useBean>

<jsp:setProperty name="studb" property='*'/>

<jsp:forward page="display.jsp"></jsp:forward>

</body>

</html>

index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- send the form data to first.jsp -->

<form action="first.jsp">

Student Name : <input type="text" name = "sname">

Student Roll no : <input type="text" name = "rno">

<input type = "submit" value="Submit"/>

</form>

</body>

</html>

8. Discuss the types of JDBC statements with an example
10 CO1 L2

The preparedStatement object allows you to execute parameterized queries.

A SQL query can be precompiled and executed by using the PreparedStatement object.

• Ex: Select * from publishers where pub_id=?

Here a query is created as usual, but a question mark is used as a placeholder for a value• that is inserted

into the query after the query is compiled.

The preparedStatement() method of Connection object is called to return the• PreparedStatement object.

Ex: PreparedStatement stat; stat= con.prepareStatement(“select * from publisher where pub_id=?”)

Callable Statement:

The CallableStatement object is used to call a stored procedure from within a J2EE object. A Stored

procedure is a block of code and is identified by a unique name.

The type and style of code depends on the DBMS vendor and can be written in PL/SQL Transact-SQL, C,

or other programming languages.

IN, OUT and INOUT are the three parameters used by the CallableStatement object to call a stored

procedure.

The IN parameter contains any data that needs to be passed to the stored procedure and• whose value is

assigned using the setxxx() method.

 The OUT parameter contains the value returned by the stored procedures. The OUT parameters must be

registered using the registerOutParameter() method, later retrieved by using the getxxx()

The INOUT parameter is a single parameter that is used to pass information to the stored procedure and

retrieve information from the stored procedure.

9. Write a JSP program to implement all the attributes of page directive tag
10 CO2 L6

student.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Student Information System</title>

<h4>Enter the details</h4>

</head>

<body>

<formaction="process.jsp" method="post">

<table boder=1>

<tr><td>Usn No.</td><td><input type="text" name="usn"/></td></tr>

<tr><td>Student Name</td><td><input type="text" name="name"/></td></tr>

<tr><td>Department</td><td><input type="text" name="dept"/></td></tr>

</table>

<input type="submit" value="Submit"/>

<input type="reset" value="Clear"/>

</form>

</body>

</center>

</html>

process.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<% String name="",usn="",dept="";

usn=request.getParameter("usn");

name=request.getParameter("name");

dept=request.getParameter("dept");

out.println("<html><center><body bgcolor=grey>"); %>

<%@page errorPage="error.jsp" session="true" isThreadSafe="true" %>

<%synchronized(this)

{

wait(1000);

}

if(dept.equals("")||name.equals("")||usn.equals(""))

thrownew RuntimeException("FieldBlank");

}

else

{

session.setAttribute("name",name);

session.setAttribute("usn",usn);

session.setAttribute("dept",dept);

request.getRequestDispatcher("display.jsp").forward(request,response);

}

%>

<%out.println("<body></center></html>");

%>

</body>

</html>

error.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<%@page isErrorPage="true"%>

<%=exception %>

</body>

</html>

display.jsp

<%@page import="java.util.*" session="true" contentType="text/html;"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

<h3 align="center"> Student information</h3>

<h4 align="right"><%= newDate() %></h4>

</head>

<center>

<body>

<table border=1 cellPadding=10 cellSpacing=10>

<tr>

<th>Name</th>

<th>USN</th>

<th>Dept</th>

</tr>

<tr>

<td><%=session.getAttribute("usn")%></td>

<td><%=session.getAttribute("name")%></td>

<td><%=session.getAttribute("dept")%></td>

</tr>

</table>

</body>

 Back to info

</center>

</html

10. Summarise about bean key concepts
10 CO1 L4

Main Components of JavaBeans:

 Introspection [naming convention and BeanInfo] Persistence

 Bound and Constraints properties Customizers

Introspection:

Introspection is the automatic process

of analysing a bean's design patterns to

reveal the bean's properties, events, and

methods.

This process controls the publishing and

discovery of bean operations and

properties.

Advantages:

1. Portability - Everything is done in the Java platform, so you can write components

once, reuse them

 everywhere. There are no extra specification files that need to be maintained

independently from your

 component code. You get all the advantages of the evolving Java APIs, while

maintaining the

 portability of your components.

2. Reuse - By following the JavaBeans design conventions, implementing the

appropriate interfaces, and

 extending the appropriate classes, you provide your component with reuse potential

that possibly

 exceeds your expectations.

There are two ways for a Bean developer that can indicate which of its properties, events, and

methods should be exposed.

1. Simple naming conventions are used: These allow the introspection mechanisms to

infer information

 about a Bean (Introspector API).

2. An additional class that extends the BeanInfo class.

Introspection API:

The JavaBeans API architecture supplies a set of classes and interfaces to

provide introspection. The BeanInfo class of the java.Beans package:

 Defines a set of methods that allow bean implementors to provide explicit

information about

 their beans.

 By specifying BeanInfo for a bean component, a developer can hide methods,

specify an icon

 for the toolbox, provide descriptive names for properties, define which

properties are bound

 properties, and much more.

 The getBeanInfo() of the Introspector class can be used to provide detailed

information about a bean.

 The getBeanInfo() method relies on the naming conventions for the bean's

properties, events, and

 methods.

 The Introspector class provides Descriptor classes with information about

properties, events, and

 methods of a bean. Methods of this class identify the information that has been

supplied by the

 developer through BeanInfo classes.

The figure represents a

hierarchy of the

FeatureDescriptor classes:

Example - 3.3.1:

SimpleBean.java

package introspectionexample;
import java.io.Serializable;

public class SimpleBean implements
 Serializable{

private String Name = "SimpleBean";

private int size;
public int getSize() {
 return size;

}
public void setSize(int size) {
 this.size = size;

}

SimpleBean.java(continued)

public String getName() {

 return Name;
}

public void setName(String Name)
{

this.Name = Name;
}

}

 20 | 32

Module3 Annotations and JavaBeans

IntrospectionExample.java

import java.beans.IntrospectionException;

import java.beans.Introspector;
import java.beans.MethodDescriptor;

import java.beans.PropertyDescriptor;

public class IntrospectionExample extends SimpleBeanInfo{

public static void main(String[] args)throws IntrospectionException {

PropertyDescriptor pdname = new PropertyDescriptor("Name",
SimpleBean.class);

System.out.println("Fields of SimpleBean=" + pdname.getName());

//Getting Method information

BeanInfo info=Introspector.getBeanInfo(SimpleBean.class);

MethodDescriptor[] mdname = info.getMethodDescriptors();
for(MethodDescriptor md : mdname)

System.out.println("Methods of SimpleBean=" + md.getName());

}
}

Bean Customization

Customization provides a means for modifying the appearance and behavior of a bean within an application

builder so it meets your specific needs. The following links are useful for learning about property editors and

customizers:

 PropertyEditor interface

 PropertyEditorSupport class

 PropertyEditorManager class

 BeanInfo interface

 Customizer interface

A bean's appearance and behavior can be customized at design time within beans-compliant builder tools.

There are two ways to customize a bean:

 By using a property editor: Each bean property has its own property editor. The property editor that is

 associated with a particular property type edits that property type.

 By using customizers: Customizers give you complete GUI control over bean customization.

 Customizers are used where property editors are not applicable.

Customizers:

 Customizers gives you complete GUI control over bean customization.

 When you use a bean Customizer, you have complete control over how to configure or edit a bean.

 A Customizer is an application that specifically targets a bean's customization.

 It provides a higher level of customization when compared to property editors.

All Customizer must:

 Extend java.awt.Component or one of its subclasses.

 Implement the java.beans.Customizer interface. This means implementing methods to

 register PropertyChangeListener objects, and firing property change events at those

 listeners when a change to the target bean has occurred.

 Implement a default constructor.

 Associate the customizer with its target class via BeanInfo.getBeanDescriptor.

 21 | 32

Module3 Annotations and JavaBeans

The Customizer interface is simple and has only three methods:

void setObject(Object bean)

builder tool calls this method to pass the target bean

instance to the customizer. It is called only once, which

is before the builder tool launches the customizer.

void addPropertyChangeListener

PropertyChangeListener lis)

Register a lis(listener) for the PropertyChange event.

The customizer should fire a PropertyChange event

whenever it changes the target bean in a way that might

require the displayed properties to be refreshed.

void removePropertyChangeListener
PropertyChangeListener lis)

Remove a lis(listener) for the PropertyChange event.

Persistence:

A bean has the property of persistence when its properties, fields, and state information are saved to and

retrieved from storage. Component models provide a mechanism for persistence that enables the state of

components to be stored in a non-volatile place for later retrieval.

 The mechanism that makes persistence possible is called serialization. Object serialization means

 converting an object into a data stream and writing it to storage. Any applet, application, or tool that

 uses that bean can then "reconstitute" it by deserialization. The object is then restored to its original

 state.

For example: A Java application can serialize a Frame window on a Microsoft Windows machine, the

serialized file can be sent with e-mail to a Solaris machine, and then a Java application can restore the

Frame window to the exact state which existed on the Microsoft Windows machine.

 All beans must persist. To persist, your beans must support serialization by implementing either the

 java.io.Serializable interface, or the java.io.Externalizable interface.

 These interfaces offer you the choices of automatic serialization and customized serialization. If any

 class in a class's inheritance hierarchy implements Serializable or Externalizable, then

 that class is serializable.

You can control the level of serialization that your beans undergo. Three ways to control serilization are:

 Automatic serialization: implemented by the Serializable interface. The Java serialization

 software serializes the entire object, except transient and static fields.

 Customized serialization: Selectively exclude fields you do not want serialized by marking with the

 transient or static modifier.

 Customized file format: implemented by the Externalizable interface and its two methods.

 Beans are written in a specific file format.

Bound properties and Constrained properties:

A bound property notifies listeners when its value changes. This has two implications:

1. The bean class includes addPropertyChangeListener() methods and

removePropertyChangeListener() methods for managing the bean's listeners.

public void addPropertyChangeListener(PropertyChangeListener p){

 changes.addPropertyChangeListener(p); }

public void removePropertyChangeListener(PropertyChangeListener p) {
 changes.removePropertyChangeListener(p); }

 22 | 32

https://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangeListener.html
https://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangeListener.html

Module3 Annotations and JavaBeans

2. When a bound property is changed, the bean sends a PropertyChangeEvent to its registered

 listeners.

public interface PropertyChangeListener extends EventListener {

 public void propertyChange(PropertyChangeEvent e);

------- }

PropertyChangeEvent and PropertyChangeListener live in the java.beans package.

To implement a bound property in your application, follow these steps:

1. Import the java.beans package. This gives you access to the PropertyChangeSupport class.

2. Instantiate a PropertyChangeSupport object. This object keeps track of property listeners and

 includes a convenience method that fires property change events to all registered listeners.

Example-3.3.2:

FaceBean.java

import java.beans.*;

public class FaceBean {

private int mMouthWidth = 90;
private PropertyChangeSupport mPcs=new PropertyChangeSupport(this);

public int getMouthWidth() {
return mMouthWidth;

}

public void setMouthWidth(int mw) {

int oldMouthWidth = mMouthWidth;
mMouthWidth = mw;

mPcs.firePropertyChange("mouthWidth", oldMouthWidth, mw);

}

public void addPropertyChangeListener(PropertyChangeListener

 listener) {

mPcs.addPropertyChangeListener(listener);
}

public void removePropertyChangeListener(PropertyChangeListener

 listener) {

mPcs.removePropertyChangeListener(listener);
}

public static void main(String[] args) {

 FaceBean fb = new FaceBean();
FaceMain fm = new FaceMain();

//add the fm as a registered listener.

fb.addPropertyChangeListener(fm);

//change mouth width and notify any listeners of the change.

fb.setMouthWidth(10);

fb.setMouthWidth(30);

 fb.setMouthWidth(50);

}
}

23 | 32

Module3 Annotations and JavaBeans

FaceMain.java

package BoundConstraints;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

public class FaceMain implements PropertyChangeListener {

 @Override

//called by PropertyChangeSupport firePropertyChange() in FaceBean

public void propertyChange(PropertyChangeEvent evt1) {

 System.out.println("mouth width has been modified");

 System.out.println("Old Width: " + evt1.getOldValue());

 System.out.println("New Width: " + evt1.getNewValue());

 System.out.println("");

}

}

A constrained property is a special kind of bound property and generates an event when an attempt is made to

change its value.

 For a constrained property, the bean keeps track of a set of veto listeners. When a constrained property

 is about to change, the listeners are consulted about the change.

 Import the java.beans package, which includes a VetoableChangeSupport class that greatly

 simplifies constrained properties.

 A bean property is constrained if the bean supports the VetoableChangeListener and

 PropertyChangeEvent classes, and if the set method for this property throws a

 PropertyVetoException.

 Constrained properties are more complicated than bound properties because they also support

 property change listeners which happen to be vetoers.

The following operations in the setXXX method for the constrained property must be implemented:

1. Save the old value in case the change is vetoed.

2. Notify listeners of the new proposed value, allowing them to veto the change.

3. If no listener vetoes the change (no exception is thrown), set the property to the new value.

Syntax:
public void setPropertyName(PropertyType pt)
 throws PropertyVetoException {

//Code

}

22

Note: The VetoableChangeSupport provides the following operations:

 Keeping track of VetoableChangeListener objects.

 Issuing the vetoableChange method

on all registered listeners. Catching any

vetoes (exceptions) thrown by listeners.

 Informing all listeners of a veto by calling vetoableChange

again, but with the old property

 value as the proposed "new" value.

