CMR e

INSTITUTE OF - § \\\%

TECHNOLOGY S cMRIT
Internal Assessment Test 2 Answer Key— May. 2021

Sub: | Advanced Web Programming Sub Code: | 18MCA42 | Branch: | MCA

Date: | 19/05/2021 \ Duration: ] 90 min’s | Max Marks: |50 Sem v ‘

Q1) Explain built-in methods of array and list in ruby with examples (10 marks)

ment removes the first element of 1ist and places it in first:

The shift method removes and returns the first element (lowest sub-
script) of the array object to which it is sent. For example, the following state-

The subscripts of all of the other elements in the array are reduced by 1 as a
result of the shift operation.
The pop method removes and returns the last element from the array
object to which it is sent. In this case, there is no change in the subscripts of the
array’s other elements.
The unshift method takes a scalar or an array literal as a parameter. The
scalar or array literal is appended to the beginning of the array. This results in
an increase in the subscripts of all other array elements. The push method also
takes a scalar or an array literal. The scalar or array is added to the high end of
the array:

list=[2, 4, 17, 3]

list.shift
o/p [4,17,3]

list.pop
o/p [2,4,17]

list.unshift(8)
o/p [8,4,17,3]

list.push(8,5)
o/p [2,4,17,8,5]

Page 1 of 22




e 138ET = [1, 34 8, 7]

=3 [1, 3y 5, 7]

»>> list2 = [2; 4, 6, B]

=> [2, 4, b, 8]

>> listl.concat(list2)

miw [1ly 35 By Ty B 4y By 8]

If two arrays need to be catenated together and the result saved as a new
array, the plus (+) method can be used as a binary operator, as in the following:

>> listl
=> [0.1,
>> list2
= T3alle Exls 73]

>> list3 listl + list2

=~ TOY, 2ody Hally ¥, B8, ¥hy 75

THells Belly Sully 7.5
s Bely Ful]
[E8, S.1, $.8)

[ S |

B

Note that neither 1ist1 nor 1ist2 are affected by the plus method.
The reverse method does what its name implies. For example:

o> 1igt = [2; 4, 8, 16]
“ MR PR SIS SRS |

>> ligt.reverse

=> 116, 8, 4, 2]

>> list

= T8, 3, B, 18]

Note that reverse returns a new array and does not affect the array to which it
is sent. The mutator version of reverse, reverse!, does what reverse does,
but changes the object to which it is sent. For example:

s list = [2, 4, 8, 16]

== [2, 4, B; 1E]

>> list.reverse!

Q2) Explain built-in methods of string in ruby with examples (10 marks)

Catenation

>> “"Happy" + " " + "Holidays!"
=> "Happy Holidays!"
Append

>> mystr = "G'day "

= HG " day "

>> mystr << "mate"
=> "G'day mate"
mystr += “mate”

Page 2 of 22



>> mystr = "Wow!"
=> "Wow!"

>> yourstr = mystr
=> "Wow!"

>> yourstr

=> "Wow!"

>> mystr = "Wow!"
=> "Wow!"

>> yourstr = mystr
=> "Wow!"

>> mystr = "What?"
=> "What?"

>> yourstr

=> "Wow!"

>> mystr = "Wow!"

=> "Wow!"

>> yourstr = mystr

=> "Wow!"

>> mystr.replace("Golly!")
=> "Golly!"

>> mystr

=> "Golly!"

>> yourstr

=> "Golly!"

Method Action

capitalize  Convert the first letter to uppercase and the rest of the letters
to lowercase

chop Removes the last character

chomp Removes a newline from the right end, if there is one
upcase Converts all of the lowercase letters in the object to uppercase
downcase Converts all of the uppercase letters in the object to lowercase
strip Removes the spaces on both ends

lstrip Removes the spaces on the left end

rstrip Removes the spaces on the right end

reverse Reverses the characters of the string

swapcase Convert all uppercase letters to lowercase and all lowercase

letters to uppercase

Bang or mutator methods

Page 3 of 22



>> str = "Frank" S —

=> "Frank" => "Frank"

> str.upcase!l
>> str.upcase => "FRANK"

=> "FRANK" >> Str
=> "FRANK"

Q3) Write a ruby program to count words and their frequencies in the given string (10 marks)

freq = Hash.new

line words = Array.new

# Main loop to get and process lines of input text
while line = gets

¥ Split the line into words
line wards = line.chomp.split{ /[ %\.,;ri\R]is*/)

¥ Loop to count the words (either increment or initialize to 1)
for word in line words
if freq.has Eey?{word) then
freq[word] = freq[word] + 1
else
freg[word] = 1
and
end
end
# Display the words and their frequencies
puts "\n Word \t\t Frequency \n\n"
for word in freg.keys.sort
puts " #{word} \t\t #{freq[word]}"
end

Q4) Give an example how dynamic documents are generated in ruby on rails (10 marks)

Page 4 of 22



As an example of a dynamic document, we construct a new application that
gives a greeting, but also displays the current date and time, including the num-
ber of seconds since midnight (just so some computation would be included).
This application is named rails2 and the controller is named time. This
application will illustrate how Ruby code that is embedded in a template file can
accesse instance variables that are created and assigned values in the action
method of the controller.

Ruby code is embedded in a template file by placing it between the <% and
%> markers. If the Ruby code produces a result and the result is to be inserted
into the template document, an equal sign (=) is attached to the opening marker.
For example:

<p> The number of seconds in a day is: <%= 60 * 60 * 24 %>
</p>

After interpretation, this is as follows:

<p> The number of seconds in a day is: 86400 </p>

The date can be obtained by calling Ruby’s Time.now method. This
method returns the current day of the week, month, day of the month, time,
time zone,” and year, as a string. So, we can put the date in the response tem-
plate with:

<p> It is now <%= Time.now %> </p>

The value returned by Time.now can be parsed with the methods of the
Time class. For example, the hour method returns the hour of the day, the min
method returns the minutes of the hour, and the sec method returns the sec-
onds of the minute. These methods can be used to compute the number of sec-

onds since midnight. Putting these together results in the following template
file:

<!DOCTYPE html PUBLIC "-//w3¢//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<!l-- timer.rhtml - Response document for rails2 -
Hello World + time
PR
<html xmlns = "http://www.w3.0rg/1999/xhtml">
<head>
<title> rails2 example </title>

Page 5 of 22



</head>

<body>
<h2> Hello World! </h2>
<p>
It is now <%= = Time.now %> <br />

Number of seconds since midnight:
<%= t.hour * 3600 + t.min * 60 + t.sec %>
</p>
</body>
</html>

In this case, the template file resides in the time subdirectory (time is the
name of the controller of this application) of the views subdirectory of the app
subdirectory of the rails2 directory.

Figure 15.5 shows the display of the rails2 application.

Hello World!
It s now Sum Mav 20 20:13:40 0600 2007
Number of seconds since miduight: 72820

Figure 15.5 The output of rails2 (time/timer)

It would be better to place the Ruby code of rails2 in the controller,
because that would separate the program code from the markup. In this case, it
does not amount to much code, but we will show it as a new application named
rails3, with the controller named time2 with an action method named
timer2, just to illustrate how it would appear. The controller class would be as
follows:

class Time2Controller < ApplicationController
def timer2
@t = Time.now
@tsec = @t.hour * 3600 + @t.min * 60 + @t.sec
end
end

Page 6 of 22



The response template now needs to be able to access the instance variables
in the Time2Controller class. Rails makes this trivial, for all instance vari-
ables in the controller class are visible to the template. The template file for
rails3 is shown in the following program.

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<!-- timer2.rhtml - Response document for rails3 -
Hello World + time
S
<html xmlns = "http://www.w3.0rg/1999/xhtml">
<head>
<title> rails3 example </title>
</head>
<body>
<h2> Hello World! </h2>
<p>

It is now <%= @t %> <br />
Number of seconds since midnight:
<%= @tsec %>
</p>
</body>
</html>

Q5) Explain form handling in rails. (10 marks)

15.3.1 Setting Up the Application

As with all Rails applications, we begin by creating an application subdirectory
under the rails_apps directory (rails_apps is a subdirectory of
InstantRails). In this case, the subdirectory is named popcorn. We then
switch to the new directory and generate a controller named home with the fol-
lowing command:

>ruby script/generate controller home

Page 7 of 22



We then open that controller, whose file is named home_controller.rb. (It
resides in the controllers directory.) We add an empty action method named
the_form to this class.

The next step in developing this application is to add the
the_form.rhmtl template to the home subdirectory of the views directory
of our application. The contents of the form.rhtml is exactly the same as the
popcorn HTML files in Chapters 2 and 11, except that the opening form tag
appears as follows:

<form action = "result" method = "post">

This specifies that the name of the action method in the application’s controller,
as well as the template for the result of submitting the form, is result. Notice
that this tag specifies the POST HTTP method. Rails requires that POST be
used.

Now, we point our browser to the following:

http://localhost/home/the form

The resulting display is shown in Figure 15.6.

- - - - . — —_ e - e———

Welcome to Millenium Gymnastics Booster Club
Popcorn Sales

Buyer's Name: |

Street Address: |

City, Stae, Zip: | s
Product \ame Price | lQmmm _

Tnpopy \edPopcom(l Ib) $3.00

Coaramel Popcorn (2Ib canni: ter) fS; a0 _ _J

Caramc! Nut PopcOm (2113 canmicter] 4 ‘0 - u[

s b S— spevriaad —

Toﬁ‘cy “ut Popcom 2 Ih. eannis fﬂ’) 5% "" J

Pavment Method:

Visa

Master Card
Discover
Check

| Subnut Ordar ] [ Claar Order Form l

Figure 15.6 The popcorn application initial display

Page 8 of 22



e e |
...L(.iv-\:' &

The Controller and the View

N

The next step of the construction of the application is to build the action
method in home controller.rb to process the form data when the form is
submitted. In the initial template file, the form.rhtml, this method is named
result in the action attribute of the form tag. The result method has two
tasks, the first of which is to fetch the form data. This data is used to display
back to the customer and to compute the results. The form data is made avail-
able to the controller class through the Rails-defined object, params. params is
a hash-like object that contains all of the form data (as well as some other
things). It is hash-like because it is a hash that can be indexed with either sym-
bols or actual keys (a hash can be indexed only with keys). The common Rails
convention is to index params with symbols. For example, to fetch the value of
the form element whose name is phone, we would use the following:

@phone = params|[:phone]

Of course, all form data is in string form. However, some of the values are
integer numeric quantities, so they must be converted to integers with the to_i
method of string. The form of the statements to fetch the form data is illus-
trated by the following statement:

@unpop = params[:unpop].to i

Notice that the instance variable has the same name as the form element. In this
case, the value is a quantity, which is converted to an integer. The other quanti-
ties on the form are those for the form elements named caramel, caramel-
nut, and toffeynut. In addition, the string values for name, street, city,
and payment must be fetched.

The computations for the application are for the cost of each variety of
popcorn, the total number of items ordered, and the total cost of the order. The
unit prices are as follows:

unpopped corn  $3.00
caramel corn $3.50
caramel nut corn  $4.50
toffey nutcorn  $5.00

The computations are relatively simple. The only complication is that people
prefer that when money amounts are displayed, there should be exactly two dig-
its displayed to the right of the decimal point. Formatted numbers such as these
can be created as strings in the controller for display in the template. The way
to convert a floating-point value to a formatted string is with a variation of the
old C language function sprintf. This function, which also is named
sprintf, takes a string parameter that contains a format code, followed by the
name of a variable to be converted. The string version is returned by the func-
tion. The format codes most commonly used are £ and d. The form of a format

Page 9 of 22



code is a percent sign (%), followed by a field width, followed by the code letter
(£ or d). The field width for the £ code appears in two parts, separated by a dec-
imal point. For example, $£7.2 means a total field width of 7 spaces, with 2
digits to the right of the decimal point, which is perfect for money. The 4
code field width is just a number of spaces, for example, $5d. So, to convert a
floating-point value referenced by the variable @total to a string with two dig-
its to the right of the decimal point, the following could be used:

@str = sprintf("%5.2f", @total)

The sprintf function is used in the controller for our popcorn application,
which is shown in the following program:

# home controller.rb - for the popcorn application
class HomeController < ApplicationController

def the form

end

# result method - fetch data and compute the cost
def result

} Fetch the form values
@unpop = params|:unpop].to_ i

@caramel = params|:caramel].to i
@caramelnut = params|:caramelnut].to i
@toffeynut = params|:toffeynut].to i
@name = params| :name |

@street = params|:street]
@city = params|:city]
@payment = params|:payment]

# Compute the item costs and total cost
@unpop cost = 3.0 * @unpop
@caramel cost = 3.5 * @caramel
@caramelnut cost = 4.5 * @caramelnut
@toffeynut cost = 5.0 * @toffeynut
@total price = @unpop cost + @caramel_ cost +
@caramelnut_cost + Q@toffeynut_cost
ftotal items = @unpop + @caramel + @caramelnut + @toffeynut

# Now convert the dollar amounts to strings with 2 digits
# to the right of the decimal point

@total price = sprintf("%5.2f", @total_price)

@unpop cost = sprintf("$5.2f", @unpop_cost)

fcaramel cost = sprintf("%5.2f", @caramel cost)

Page 10 of 22



@caramelnut_cost = sprintf("%5.2f", @caramelnut_cost)
@toffeynut cost = sprintf("%$5.2f", @toffeynut cost)

end
end

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<!-- result.rhtml - result view for the popcorn application
——>

<html xmlns = “http://www.w3.0rg/1999/xhtml">

<head>

<title> result.rhtml </title>

<head>

<body>
<!-- Display the customer information -->

<h4> Customer: </hd>

<%= @name %> <br /> <%= @street %> <br />
<%= fQcity %>

<p /> <p />

<!-- Display a table of the order information -->
<table border = "border">

<caption> Order Information </caption=>

<tr>
<th> Product </th>
<th> Unit Price </th>
<th> Quantity </th>
<th> Item Cost </th>

</tr>

Page 11 of 22



<td> <%= @unpop %> </td>
<td> $<%= @unpop_cost %> </td>
</tr>
<tr align = "center">
<td> Caramel Popcorn </td>
<td> £3.50 </td>
<td> <%= @caramel %> </td>
<td> $<%= @caramel cost %> </td>
</tr>
<tr align = "center">
<td> Caramel Nut Popcorn </td>
<td> $4.50 </td>
<td> <%= fcaramelnut %> </td>
<td> $<%= Bcaramelnut cost %> </td>
s
<tr align = "center">
<td> Toffey Nut Popcorn </td>
<td> $5.00 </+td>
<td> <%= @toffeynut %> </td>
<td> $<%= @toffeynut cost %> </td>
</tr>
</table>
<p /f>=<p />

<p>
You ordered <%= @total items %> popcorn items <br />
The total cost of your order is $<%= @total_price %> <br />
Your chosen method of payment is: <%= @payment %> <br />
Thank you for your order

</p>

</body>
</html>

Q6) Explain code block iterators in ruby (10 marks)
The times iterator method provides a way to build simple counting loops.
Typically, times is sent to a number, which repeats the attached block that

number of times. Consider the following example:

>> 4.times {puts "Hey!"}
Hey!
Hey!
Hey!
Hey!
=> 4

The times method repeatedly executes the block. This is a different approach
to control of a subprogram, of which the block is clearly a form.

Page 12 of 22



The most commonly used iterator is each, which is often used to go
through arrays and apply a block to each element. For this, it is convenient to
allow blocks to have parameters. Blocks can have parameters, which appear at
the beginning of the block, delimited by vertical bars (1). The following exam-
ple, which uses a block parameter, illustrates the use of each:

>> list = [2, 4, 6, 8]
=>[2, 4, 6, 8]
>> list.each {|value| puts value}

I o o s N

The each iterator works equally well on array literals, as in the following:

>> ["Joe", "Jo", "Joanne"].each {|name| puts name}
Joe

Jo

Joanne

=> ["Joe", "Jo", "Joanne"]

The upto iterator method is used like times, except that the last value of
the counter is given as a parameter. For example:

>> 5.upto(8) {|value| puts value}

I o0~ o W

The step iterator method takes a terminal value and a step size as parame-
ters and generates the values from that of the object to which it is sent and the
terminal value. For example:

>> O.step(6, 2) {|value| puts value}

I o & N O

>0

The collect iterator method takes the elements from an array, one at a
time, like each, and puts the values generated by the given block into a new
array. For example:
>> list = [5, 10, 15, 20]
=> [5, 10, 15, 20]

Page 13 of 22



>> list.collect {|value| value = value - 5}
=> [0, 5, 10, 15]
>> list

=> [5, 10, 15, 20]
>> list.collect! {
=> [0, 5, 10, 15]
>> list

=> [0, 5, 10, 15]

value| value = value - 5}

As can be seen from this example, the mutator version of collect is probably
more often useful than the non-mutator version, which does not save its result.

Q7) Explain default grid system in Bootstrap. (10 marks)

Default Grid System

The default Bootstrap grid (see Figure 1-1) system utilizes 12 columns, making for a 940px-wide container
without responsive features enabled. With the responsive CSS file added, the grid adapts to be 724px or
1170px wide, depending on your viewport. Below 767px viewports, such as the ones on tablets and smaller
devices, the columns become fluid and stack vertically. At the default width, each column is 60 pixels wide
and offset 20 pixels to the left. An example of the 12 possible columns is in Figure 1-1

HEEEEENEEEEE S

5 1 5 ] 3§

12

Figure 1-1. Default grid

Basic Grid HTML

To create a simple layout, create a container with a <div> that has a class of .row and
add the appropriate amount of .span* columns. Since we have a 12-column grid, we
just need the amount of .span* columns to equal 12. We could use a 3-6-3 layout, 4-8,
3-5-4, 2-8-2... we could go on and on, but I think you get the gist.

The following code shows .span8 and .span4, which adds up to 12:

<div class="row">

<div class="span8">...</div>

<div class="span4">...</div>

</div>

Offsetting Columns

You can move columns to the right using the .offset* class. Each class moves the span
over that width. So an .offset2 would move a .span7 over two columns (see

Figure 1-2):

<div class="row">

<div class="span2">...</div>

<div class="span7 offset2">...</div>

Page 14 of 22



</div>

spanz offsett span3 offset]

span? offset2

3

spand offsetd

Figure 1-2. Offset grid

Nesting Columns
To nest your content with the default grid, inside of a .span*, simply add a new .row

with enough .span* that it equals the number of spans of the parent container (see
Figure 1-3):

<div class="row">
<div class="span9"s
Level 1 of column
<div class="row">
<div class="span6">Level 2</div>
<div class="span3"sLevel 2</div>
</div>
</div>
</div>

Level 1 of column

Level 2 Level 2

Figure 1-3. Nesting grid

Q8) Discuss typography in bootstrap with examples (10 marks)

Page 15 of 22



Starting with typography, Bootstrap uses Helvetica Neue, Helvetica, Arial, and sans-
serif in its default font stack. These are all standard fonts and are included as defaults
on all major computers. If by chance these fonts don't exist, they fall back to sans-
serif (the catchall) to tell the browser to use the default font for the browser. All body
copy has the font-size set at 14 pixels, with the line-height set at 20 pixels. The <p>
tag has a margin-bottom of 10 pixels, or half the line-height.

Headings

All six standard heading levels have been styled in Bootstrap (see Figure 2-1), with the
<h1> at 36 pixels tall, and the <h6> down to 12 pixels (for reference, default body text is
14 pixels tall). In addition, to add an inline subheading to any of the headings, simply
add <small> around any of the elements and you will get smaller text in a lighter color.
In the case of the <h1>, the small text is 24 pixels tall, normal font weight (i.e., not bold),
and gray instcad of black:

h1 small {
font-size:24px;
font-weight:normal;
line-height:1;
color:#999;
1

Lead Body Copy

To add some emphasis to a paragraph, add class="1ead" (see Figure 2-2). This will
give you larger font size, lighter weight, and a taller line height. This is generally used
for the first few paragraphs in a section, but it can really be used anywhere:

<p class="lead"=Bacon ipsum dolor sit amet tri-tip pork loin ball tip frankfurter
swine boudin meatloaf shoulder short ribs cow drumstick beef jowl.

Meatball chicken sausage tail, kielbasa strip steak turducken venison prosciutto.
Chuck filet mignon tri-tip ribeye, flank brisket leberkas. Swine

turducken turkey shank, hamburger beef ribs bresasla pastrami venison rump.</ps

Emphasis

In addition to using the <small> tag within headings, as discussed above, you can also
use it with body copy. When <small> is applied to body text, the font shrinks to 85% of
its original size.

Bold

To add emphasis to text, simply wrap it in a <strong> tag. This will add font-
weight:bold; to the selected text.

Italics

For italics, wrap your content in the <em> tag. The term “em” derives from the word
“emphasis” and is meant to add stress to your text.

Page 16 of 22



Emphasis Classes

Along with <strong> and <em>, Bootstrap offers a few other classes that can be used to
provide emphasis (see Figure 2-3). These could be applied to paragraphs or spans:

<p class="muted">This content is muted</p=>

<p class="text-warning">This content carries a warning class</p>

<p class="text-error">This content carries an error class</p>

<p class="text-info">This content carries an info class</p=

<p class="text-success">This content carries a success class</p>

<p=This content has <em=emphasis<fem=, and can be <strong=zbold</strong=</p=>

Abbreviations

The HTML <abbr> element provides markup for abbreviations or acronyms, like
WWW or HTTP (see Figure 2-4). By marking up abbreviations, you can give useful
information to browsers, spell checkers, translation systems, or search engines. Boot-
strap styles <abbr> elements with a light dotted border along the bottom and reveals
the full text on hover (as long as you add that text to the <abbr> title attribute):

<abbr title="Real Simple Syndication">RSS</fabbr>

Add .initialism to an <abbr> for a slightly smaller font size (see Figure 2-5):

<abbr title="rolling on the floor, laughing out loud"=That joke had me ROTFLOL
</abbrs

Addresses

Adding <address> elements to your page can help screen readers and search engines
locate any physical addresses and phone numbers in the text (see Figure 2-6). It can also
be used to mark up email addresses. Since the <address> defaults to display:block;
you'll need to use <br> tags to add line breaks to the enclosed address text (e.g., to split
the street address and city onto separate lines):

<address>

<strong>0'Reilly Media, Inc.</strong><br>

1005 Gravenstein HWY North<br>

Sebastopol, CA 95472<br>

<abbr title="Phone">P:</abbr> <a href="tel:+17078277000">(707) 827-7000</a>
</address>

<address>

<strong>Jake Spurlock</strong><br>

<a href="mailto:#">flast@oreilly.com</a>
</address>

Page 17 of 22



Blockquotes

To add blocks of quoted text to your document—or for any quotation that you want to
set apart from the main text flow—add the <blockquote> tag around the text. For best
results, and for line breaks, wrap each subsection in a <p> tag. Bootstrap’s default styling
indents the text and adds a thick gray border along the left side. To identify the source

of the quote, add the <small> tag, then add the source’s name wrapped in a <cite> tag
before closing the </small> tag:

<blockquote>
<p>That this is needed, desperately needed, is indicated by the
incredible uptake of Bootstrap. I use it in all the server software
I'm working on. And it shows through in the templating language I'm
developing, so everyone who uses it will find it's "just there" and
works, any time you want to do a Bootstrap technique. Nothing to do,
no libraries to include. It's as if it were part of the hardware.
Same approach that Apple took with the Mac 0S in 1984.</p>
<smallsDeveloper of RSS, <cite title="Source Title"sDave Winer</cite>
<fsmall>
<fblockquote>

Q9) Define Bootstrap. Explain what support and styling bootstrap offers for the three main list
types (ordered, unordered, and definition lists) (10 marks)

Bootstrap is a free and open-source CSS framework directed at responsive, mobile-first front-end web development. It
contains CSS- and (optionally) JavaScript-based design templates for typography, forms, buttons, navigation and
other interface components.
Bootstrap is an open source product from Mark Otto and Jacob Thornton who, when it was initially released, were
both employees at Twitter. There was a need to standardize the frontend toolsets of engineers across the company
Unordered list
If you have an ordered list that you would like to remove the bullets from, add
class="unstyled" to the opening <ul> tag
<h3>Favorite Outdoor Activities</h3>
<ul>
<li>Backpacking in Yosemite</li>
<li>Hiking in Arches
<ul>
<li>Delicate Arch</li>
<li>Park Avenue</li>
</ul>
</li>
<li>Biking the Flintstones Trail</li>
</ul>

Favorite Outdoor Activities

« Backpacking in Yosemite
« Hiking in Arches

o Delicate Arch

o Park Avenue
» Biking the Flintstones Trail

Ordered list
An ordered list is a list that falls in some sort of sequential order and is prefaced by

Page 18 of 22



numbers rather than bullets. This is handy when you want to build a

list of numbered items like a task list, guide items, or even a list of comments on a blog
post:

<h3>Self-Referential Task List</h3>

<ol>

<li>Turn off the internet.</li>

<li>Write the book.</li>

<li>... Profit?</li>

</ol>

Self-Referential Task List

1. Turn off the internet. ~
2. Right the book
3. ... Profit?

Definition list

The third type of list you get with Bootstrap is the definition list. The definition list
differs from the ordered and unordered list in that instead of just having a block-level
<li> element, each list item can consist of both the <dt> and the <dd> elements. <dt>
stands for “definition term,” and like a dictionary, this is the term (or phrase) that is
being defined. Subsequently, the <dd> is the definition of the <dt>.

A lot of times in markup, you will see people using headings inside an unordered list.
This works, but may not be the most semantic way to mark up the text. A better method
would be creating a <dI> and then styling the <dt> and <dd> as you would the heading
and the text. That being said, Bootstrap offers some clean default styles

and an option for a side-by-side layout of each definition:

<h3>Common Electronics Parts</h3>

<dl>

<dt>LED</dt>

<dd>A light-emitting diode (LED) is a semiconductor light source.</dd>
<dt>Servo</dt>

<dd>Servos are small, cheap, mass-produced actuators used for radio
control and small robotics.</dd>

</dI>

Common Electronics Parts

LED
A light-emitting diode (LED) is a semiconductor light source.
Servo
Servos are small, cheap, mass-produced actuators used for radio control and small robotics.

To change the <dI> to a horizontal layout, with the <dt> on the left side and the <dd>
on the right, simply add class="dl-horizontal" to the opening tag

Common Electronics Parts

LED A light-emitting diode (LED) is a semiconductor light source.
Servo Servos are small, cheap, mass-produced actuators used for radio control and small robotics.

Q10) Discuss how tables are handled in bootstrap. (10 marks)

Page 19 of 22



Table 2-1. Table elements supported by Bootstrap

Tag Description

<table>  Wrapping element for displaying data in a tabular format
<thead>  Container element for table header rows (<t r>) to label table columns

<tbody>  (ontainer element for table rows (<tr>) in the body of the table

<tr> Container element for a set of table cells (<td> or <th>) that appears on a single row
<td> Default table cell
<th> Spedial table cell for column (or row, depending on scope and placement) labels. Must be used within a <thead>

<caption> Description or summary of what the table holds, especially useful for screen readers

If you want a nice, basic table style with just some light padding and horizontal dividers,
add the base class of . table to any table (see Figure 2-13). The basic layout has a top
border on all of the <td> elements:

<table class="table"s
<caption>...</caption>
<thead>
<tr=
<th=...</th>
<th>...<fth>
</tr>
</thead>
<tbody>
<tr=
<td>...</td>
<td>...</td>
</tr=
</tbody>
</table>

Name Phone Number Rank
Kyle West 707-827-7001 Eagle
Davey Preston 707-827-7003 Eagle

Taylor Lemman 707-827-7005 Eagle

Figure 2-13. Basic table class

Page 20 of 22



Optional Table Classes

Along with the base table markup and the . table class, there are a few additional classes
that you can use to style the markup. These four classes are: . table-striped, . table-
bordered, . table-hover, and . table-condensed.

Striped table

By adding the .table-striped class, you will get stripes on rows within the <tbody>
(see Figure 2-14). This is done via the CSS :nth-child selector, which is not available

on Internet Explorer 7-8.

Name
Kyle West
Davey Preston

Taylor Lemmen

Phone Number

707-827-7001

707-827-7003

707-827-7005

Rank
Eagle
Eagle

Eagle

Figure 2-14. Striped table class

Bordered table

If you add the . table-bordered class, you will get borders surrounding every element

and rounded corners around the entire table, as shown in Figure 2-15.

Name
Kyle West
Davey Preston

Taylor Lemmon

Phone Number

707-827-7001

707-827-7003

707-827-7005

Rank
Eagle
Eagle

Eagle

Figure 2-15. Bordered table class

Page 21 of 22




Hover table

Figure 2-16 shows the .table-hover class. A light gray background will be added to
rows while the cursor hovers over them.

Name Phone Number Rank
Kyle West TO7-827-7001 Eagle
Davey Preston TO7-B27-7003 Eagle
Taylor Lemmon TO7-B27-7005 Eagle

Figure 2-16. Hover table class

Condensed table

If you add the . table-condensed class. as shown in Figure 2-17, row padding is cut in
half to condense the table. This is useful if you want denser information.

Name Phone Number Rank
Kyle West 707-827-7001 Eagle
Davey Praston 707-827-7003 Eagle
Taylor Lemmon TO07-8B27-7005 Eagle

Figure 2-17. Condensed table class

Table Row Classes

The classes shown in Table 2-2 will allow you to change the background color of your
rows (see Figure 2-18).

Table 2-2. Optional table row classes

Class Description Background color
.success Indicates a successful or positive action. Green

.error Indicates a dangerous or potentially negative action. Red

.warning Indicates a warning that might need attention. Yellow
.info Used as an alternative to the default styles. Blue
= Product Payment Taken Status
1 TB - Monthly 01/04/2012 Approved
2 TB - Monthly 02/04/2012 Declined
3 TB - Monthly 03/04/2012 Pending
4 TB - Monthly 04/04/2012 Call in to confirm

Figure 2-18. Table row classes

Page 22 of 22



