

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – II

Sub: Object Oriented Modeling And Design Code: 18MCA43

Date: 20-05-2021 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer ONE FULL QUESTION from each part

 Marks
OBE

CO RBT

Part – I

 1 Explain the concept of whole-part design pattern with suitable example.

The Whole-Part design pattern helps with the aggregation of components that

together form a semantic unit. An aggregate component, the Whole1, encapsulates

its constituent components, the Parts, organizes their collaboration, and provides a

common interface to its functionality. Direct access to the Parts is not possible.

CONTEXT

Implementing aggregate objects.

PROBLEM

In almost every software system objects that are composed of other objects exist.

For example, consider a molecule object in a chemical simulation system—it can be

implemented as a graph of separate atom objects. Such aggregate objects do not

represent loosely-coupled sets of components. Instead, they form units that are more

than just a mere collection of their parts.

We need to balance the following forces when modeling such structures:

• A complex object should either be decomposed into smaller objects, or composed

of existing objects, to support reusability, changeability and the recombination of

the constituent objects in other types of aggregate.

• Clients should see the aggregate object as an atomic object that does not allow any

direct access to its constituent parts.

SOLUTION

Introduce a component that encapsulates smaller objects, and prevents clients from

accessing these constituent parts directly. Define an interface for the aggregate that

is the only means of access to the functionality of the encapsulated objects, allowing

the aggregate to appear as a semantic unit.

The general principle of the Whole-Part pattern is applicable to the organization of

three types of relationship:

• An assembly-parts relationship, which differentiates between a product and its

parts or subassemblies—such as the relationship of a molecule to its. atoms in our

previous example. All parts are tightly integrated according to the internal structure

of the assembly. The amount and type of subassemblies is predefined and does not

vary.

• A container-contents relationship, in which the aggregated object represents a

container. For example, a postal package can include different contents such as a

book, a bottle of wine, and a birthday card. These contents are less tightly coupled

than the parts in an assemblyparts relationship. The contents may even be

dynamically added or removed.

• The collection-members relationship, which helps to group similar objects—such

as an organization and its members. The collection provides functionality, such as

iterating over its members and performing operations on each of them. There is no

distinction between individual members of a collection—all of them are treated

equally.

10 CO1 L2

These relationships mimic relationships between objects in the real world. When

modeling them with software entities, it is not always obvious which kind of

relationship is appropriate. A molecule may be considered as an assembly composed

of different atoms, but also as a container with atoms as its contents. Which

relationship is most appropriate depends on the desired use of the aggregate.

It is important to note that these categorizations define relationships between

objects, and not between data types.

STRUCTURE

The Whole-Part pattern introduces two types of participant:

A Whole object represents an aggregation of smaller objects, which we call Parts. It

forms a semantic grouping of its Parts in that it coordinates and organizes their

collaboration. For this purpose, the Whole uses the functionality of Part objects for

implementing services.

Some methods of the Whole may be just placeholders for specific Part services.

When such a method is invoked the Whole only calls the relevant Part service, and

returns

.The Whole may additionally provide functionality that does not invoke any Part

service at all.

Only the services of the Whole are visible to external clients. The Whole also acts as

a wrapper around its constituent Parts and protects them from unauthorized access.

Each Part object is embedded in exactly one Whole. Two or more Wholes cannot

share the same Part. Each Part is created and destroyed within the life-span of its

Whole.

(OR)

 2 What do you understand by communication patterns?

Communication. Patterns help to organize communication between components.

Two patterns address issues of inter-process communication: the Forwarder-

Receiver pattern and Client Dispatcher-Server pattern .

1. The Forwarder-Receiver design pattern provides transparent inter-process

communication for software systems with a peer-to-peer interaction model.

It introduces forwarders and receivers to decouple peers from the

underlying communication mechanisms.

 10 CO1 L2

Participant Classes:

Peer components are responsible for application tasks. To carry out their tasks peers

need to communicate with other peers.

Forwarder components are responsible for forwarding all these messages to remote

network agents without introducing any dependencies on the underlying IPC

mechanisms.

Receiver components are responsible for receiving messages. A receiver offers a

general interface that is an abstraction of a particular IPC mechanism. It includes

functionality for receiving and unmarshaling messages.

Example: A simple peer-to-peer message exchange scenario; Underlying

communication protocol is TCP/IP

2. The Client-Dispatcher-Server design pattern introduces an intermediate layer

between clients and servers, the dispatcher component. It provides location

transparency by means of a name service, and hides the details of the establishment

of the communication connection between clients and servers.

A server registers itself with the dispatcher component.
• At a later time, a client asks the dispatcher for a communication channel to a specified
server.

• The dispatcher looks up the server that is associated with the name specified by the

client in its registry.

• The dispatcher establishes a communication link to the server. If it is able to

initiate the connection successfully, it returns the communication channel to the

client. If not, it sends the client an error message.

• The client uses the communication channel to send a request directly to the server.

• After recognizing the incoming request, the server executes the appropriate service.

• When the service execution is completed, the server sends the results back to the
client.

Part – II

 3 Describe forwarder-receiver design pattern.

Forwarder – Receiver Design Pattern Intent:

The Forwarder-Receiver design pattern provides transparent inter-process

communication for software systems with a peer -to-peer interaction model. It

introduces forwarders and receivers to decouple peers from the underlying

communication mechanisms.

Structure:

Participant Classes:

Peer components are responsible for application tasks. To carry out their tasks peers

need to communicate with other peers.

10 CO1 L1

Forwarder components are responsible for forwarding all these messages to remote

network agents without introducing any dependencies on the underlying IPC

mechanisms.

Receiver components are responsible for receiving messages. A receiver offers a

general interface that is an abstraction of a particular IPC mechanism. It includes

functionality for receiving and unmarshaling messages.

Example: A simple peer-to-peer message exchange scenario; Underlying

communication protocol is TCP/IP

(OR)

 4 Write short note on Proxy design pattern.
The Proxy design pattern makes the clients of a component communicate with a

representative rather than to the component itself. Introducing such a placeholder

can serve many purposes, including enhanced efficiency, easier access and

protection from unauthorized access.

CONTEXT

A client needs access to the services of another component2. Direct access is

technically possible, but may not be the best approach.

PROBLEM

We do not want to hard-code its physical location into clients, and direct and

unrestricted access to the component may be inefficient or even insecure. Additional

control mechanisms are needed. A solution to such a design problem has to balance

some or all of the following forces:

• Accessing the component should be run-time-efficient, cost-effective, and safe for

both the client and the component.

• Access to the component should be transparent and simple for the client. The client

should particularly not have to change its calling behavior and syntax from that used

to call any other direct-access component.

• The client should be well aware of possible performance or financial penalties for

accessing remote clients. Full transparency can obscure cost differences between

services.

SOLUTION

Let the client communicate with a representative rather than the component itself.

This representative—called a proxy—offers the interface of the component but

performs additional pre- and post-processing such as access-control checking.

STRUCTURE

The original implements a particular service.

The client is responsible for a specific task. To do its job, it invokes the functionality

of the original in an indirect way by accessing the proxy.

The proxy offers the same interface as the original, and ensures correct access to the

original. To achieve this the proxy maintains a reference to the original it represents

The abstract original provides the interface implemented by the proxy and the

original

10 CO1 L2

PART - III

 5 Write short note on Command Processor.

The Command Processor design pattern separates the request for a service from its

execution. A command processor component manages requests as separate objects,

schedules their execution, and provides additional services such as the storing of

request objects for later undo.

CONTEXT

Applications that need flexible and extensible user interfaces, or applications that

provide services related to the execution of user functions, such as scheduling or

undo.

PROBLEM

The following forces shape the solution:

• Different users like to work with an application in different ways.

• Enhancements of the application should not break existing code.

• Additional services such as undo should be implemented consistently for all requests.

SOLUTION

The Command Processor pattern builds on the Command design pattern in

[GHJV95]. Both patterns follow the idea of encapsulating requests into objects.

Whenever a user calls a specific function of the application, the request is turned

into a command object.

A central component of our pattern description, the command processor, takes care

of all command objects. The command processor schedules the execution of

commands, may store

them for later undo, and may provide other services such as logging the sequence of

commands for testing purposes. Each command object delegates the execution of its

task to supplier components within the functional core of the application.

STRUCTURE

The abstract command component defines the interface of all command objects.

 10 CO1 L1

The controller represents the interface of the application. It accepts requests, such as

‘paste text,’ and creates the corresponding command objects. The command objects

are then delivered to the command processor for execution. The controller of

TEDDI maintains the event loop and maps incoming events to command objects.

The command processor manages command objects, schedules them and starts their

execution. It is the key component that implements additional services related to the

execution of commands.

The supplier components provide most of the functionality required to execute

concrete commands.

(OR)

 6 Discuss expanding states, nested states and reification with example.

Expanding States:

 10 CO1 L3

Nested States:

Part – IV

 7 Explain Sequence Diagram with an example.

Sequence diagrams are simple subsets of interaction diagrams. They map out

sequential events in an engineering or business process in order to streamline

activities.

Sequence diagrams can be useful reference diagrams for businesses and other

organizations. Try drawing a sequence diagram to:

Represent the details of a UML use case.

Model the logic of a sophisticated procedure, function, or operation.

See how tasks are moved between objects or components of a process.

Plan and understand the detailed functionality of an existing or future scenario.

Sequence diagrams are made up of the following elements:

Object - this box shape represents a class, or object, in UML. They demonstrate

how an object will behave in the context of the system. Class attributes should not

be listed in this shape.

Activation boxes - symbolized by a rectangle shape, an activation box represents

the time needed for an object to complete a task. The longer the task will take, the

longer the activation box becomes.

Actors - represented by a stick figure, actors are entities that are both interactive

with and

external to the system.

Package - also known as a frame, this is a rectangle shape that is used in UML 2.0

notation to contain interactive elements of the diagram. The shape has a small inner

rectangle for labeling the diagram.

Lifeline - a dashed vertical line that represents the passage of time as it extends

downward. Along with time, they represent the sequential events that occur to an

object

 10 CO1 L2

during the charted process. Lifelines may begin with a labeled rectangle shape or an

actor symbol.

Option loops - a rectangle shape with a smaller label within it. This symbol is used

to

model "if then" scenarios, i.e., a circumstance that will only occur under certain

conditions.

Alternatives - used to symbolize a choice (that is usually mutually exclusive)

between two or more message sequences. To represent alternatives, use the labeled

rectangle

shape with a dashed line inside.

Messages - packets of information that are transmitted between objects. They may

reflect

the start and execution of an operation, or the sending and reception of a signal.

o Synchronous messages - represented by a solid line with a solid arrowhead. This

symbol is used when a sender must wait for a response to a message before it

continues. The diagram should show both the call and the reply.

o Asynchronous messages - represented by a solid line with a lined arrowhead.

Asynchronous messages are those that don't require a response before the sender

continues. Only the call should be included in the diagram.

o Asynchronous return messages - represented by a dashed line with a lined

arrowhead.

o Create messages - represented by a dashed line with a lined arrowhead. These

messages are sent to lifelines in order to create themselves.

o Reply messages - represented by a dashed line with a lined arrowhead, these

messages are replies to calls.

o Delete messages - represented by a solid line with a solid arrowhead, followed by

an X symbol. This messages indicates the destruction of an object and is placed in its

path on the lifeline.

(OR)

 8 What do you mean by event and activity? Explain the signal event, change event

and time event.

 10 CO5 L2

 Q1 What do you mean by event and activity? Explain the signal event, change

event and time event.

An event is an occurrence at a point in time, such as user depresses left button of

mouse. An event happens instantaneously with regard to the time scale of an

application. Events cause state changes which is shown in State Diagrams

An activity represents a business process. Fundamental elements of the activity are

actions and

control elements (decision, division, merge, initiation, end, etc.). An action is an

individual step

within an activity, for example, a calculation step that is not deconstructed any

further, but that does not necessarily mean that the action cannot be subdivided in

the real world.

Signal Event

a signal event represents a named object that is dispatched (thrown) asynchronously

by one object and then received (caught) by another. Exceptions are an example of

internal signal

a signal event is an asynchronous event

signal events may have instances, generalization relationships, attributes and

operations.

Attributes of a signal serve as its parameters

A signal event may be sent as the action of a state transition in a state machine or the

sending of a message in an interaction

signals are modeled as stereotyped classes and the relationship between an operation

and the events by using a dependency relationship, stereotyped as send

 Call Event

a call event represents the dispatch of an operation

a call event is a synchronous event

Time and Change Events

A time event is an event that represents the passage of time.

modeled by using the keyword ‘after’ followed by some expression that evaluates to

a

period of time which can be simple or complex.

A change event is an event that represents a change in state or the satisfaction of

some

condition

modeled by using the keyword ‘when’ followed by some Boolean expression

Part – V

 9 Define use case models? Explain use case diagram for vending machine. Hence

describe guidelines.

A use case is a coherent piece of functionality that a system can provide by

interacting with actors. For example, a customer actor can buy a beverage from a

vending machine. The customer inserts money into the machine, makes a selection,

and ultimately receives a beverage. Similarly, a repair technician can perform

scheduled maintenance on a vending machine.

A rectangle contains the use cases for a system with the actors listed on the outside.

The name of the system may be written near a side of the rectangle. A name within

an ellipse denotes a use case. A “stick man” icon denotes an actor, with the name

being placed below or adjacent to the icon. Solid lines connect use cases to

participating actors. In the figure, the actor Repair technician participates in two use

cases, the others in one each. Multiple actors can participate in a use case, even

though the example has only one actor per use case.

Guidelines

 10 CO5 L1

(OR)

 10 What is the use of state diagram? Draw the state diagram of a telephone line

A state diagram, also called a state machine diagram or statechart diagram, is an

illustration of the states an object can attain as well as the transitions between those

states in the Unified Modeling Language (UML). In this context, a state defines a

stage in the evolution or behavior of an object, which is a specific entity in a

program or the unit of code representing that entity.

State diagrams are used to give an abstract description of the behavior of a system.

This behavior is analyzed and represented as a series of events that can occur in one

or more possible states.

10 CO5 L2

